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Abstract

The prospects of home automation is having a whole new area where devices
actively interact with the end-user and enhance his experience. For instance, for
an inhabitant, lights can be turned o� when he leaves the room or it can help a
cleaning robot to �nd its way indoor. In order to executed these tasks, the de-
vices need to locate us as well we need to locate ourselves. Using Bluetooth Low
Energy signals, we are looking to have a room localization. The CrownStone
is a device using Bluetooth Low Energy to communicate and we are looking to
use these signals to localize ourselves indoor. But from a phone to another, the
chip, the sensor and the hardware di�er and induce major di�erences on the
reads of the signals.

L'automatisation de notre intérieur nous permets d'avoir de nombreux appareils
communiquant entre eux et fonctionnant de manière totalement autonome, aug-
mentant notre confort et la facilité de vie. Mais de nombreux appareils n'ont pas
cette capacité de se connecter sur le réseau de l'internet of Things. Crownstone
est un adaptateur capable de se connecter à notre smartphone et nous donner
la capacité de contrôler l'appareil sur lequel il est branché. Une de ses carac-
téristiques est d'utiliser des signaux Bluetooth Low Energy et nous souhaitons
d'utiliser ces signaux pour pouvoir nous localiser dans le milieu intérieur. Mais
d'un appareil à un autre, nous pouvons avoir des di�érences signi�catives dans
la réception du signal.
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About the company

Crownstone1 was originally developed by Dobots which is a daughter company
of Almende, a SME (Small and Medium-sized Enterprise) conceiving solutions
in the ITC �elds. It became it's own company in 2016 and specializes itself in
home automation and its relation with the Internet Of Things. The core team
stayed the same allowing a rapid and e�cient transition.
With most of the team working in the same o�ce and with a short hierarchic
line, the company is able to operate and react quickly and keeps transparency.
Regular feedback and planning meeting allow the team to work together while
letting each employee to keep a large amount of autonomy in their work.

1https://crownstone.rocks/
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Chapter 1

Introduction

Over this last decade, the number of intelligent and connected devices skyrock-
eted. One of the most remarkable of them is the mobile phone which became a
multimedia device with always growing computation power and connectivity.

This smart phone quickly became the most owned device. Its versatility and
the numerous of built-in sensors make it the perfect hub to bind and connect
the intelligent devices together.

The spread of intelligence and connectivity gave birth to new applications
and in particular,in the �eld of home automation.

Home automation involves the control and automation of the di�erent ap-
pliances. The Crownstone, a �smart� power outlet, allows to enhance the house
comfort and control by connecting to traditional devices. The Crownstone works
as a remote switcher, allows power monitoring and also works as a beacon for
Indoor localization.

Figure 1.1: A Crownstone Prototype

5



1.1 Problem statement

Localizing ourselves indoor allows a great number of applications as turning on
and o� light depending of our presence, safe lock dangerous devices when out
of reach. It could help robots and people to navigate indoors with few visual
information.

Indoor localization with the Crownstone is based on Bluetooth Low Energy
(BLE) signal strength. The Crownstone works as a beacon and communicates
with the phone through Bluetooth. Knowing the position of the beacon, we can
deduce the room we are in. But actually we quickly met technical limitations.

First, the BLE signal is prone to interfere with other electromagnetic signals
and obstacles such the walls and people in the room and also is heavily in�u-
enced by the hardware and software on the phone.

To localize ourselves indoor, we could also use several methods such as odom-
etry, using the signal strength to calculate the distance or measure the in�uence
of the user's body (Device Free Localization). But �ngerprinting was the method
of localization kept as it is easier to implement and seems to be more viable and
consistent than the other considered methods of localization. Fingerprinting is
a method based on associating physical data, here the received signal strength
indicator (RSSI) to a speci�c label, here an indoor area such as a room or a
part of it. Using a collection of position-labeled �ngerprints is a long process
and needs a time-consumption calibration but at the end-point we gain in reli-
ability and accuracy.

1.2 Tools

1.2.1 Phones

We are using the build-in Bluetooth sensors to read the Received Signal Strength.
To read and store the data, I created a simple Android app that simply read the
RSSI value from the BLE module and store it in a log �le accompanied with a
time stamp. The code source can be found in my GitHub1. To use it, the phone
has to be compatible with Bluetooth Low Energy and the Android Version has
to be 5 or higher. The application can be easily installed via Android Studio.

1.2.2 DoBeacons

DoBeacons are simple plug-in Bluetooth beacons. They contain only one sensor,
a Bluetooth Low Energy sensor that can broadcast advertisements and be used
to measure the RSS of nearby devices. In a realistic setting, one or two beacons

1github.com/MehdiN/bluetooth-�ngerprinting
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per room is good enough. We consider DoBeacons to broadcast uniformly in
every direction.

Figure 1.2: A DoBeacon which is a simple BLE emitter

1.2.3 Gimbals

The sensor of the phone, the antenna, was not necessary isotropic. I made two
two-axis gimbals to be able to measure the signal in every angle possible. I used
LEGO Technic to build the main structure. More details about the gimbals will
be given later in this documents.

Figure 1.3: The �rst gimbal without its motors
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Chapter 2

Bluetooth Speci�cations

2.1 Bluetooth overview

From the free encyclopedia, Bluetooth is a wireless technology standard occu-
pying a section of the 2.4 GHz ISM band, shared with the WIFI protocol.

Bluetooth operated at frequencies around 2.4 GHz and uses FHSS, a radio
technology allowing to divide data into packets and broadcasts each packet in
a di�erent channel. Bluetooth Low Energy accommodates 40 di�erent channels

The Bluetooth technology used here is Bluetooth 4.X which enables BLE. We
see with this version improvement with energy consumption and more options
for a more secure broadcast.

2.2 In�uential Factors on BLE signal

Bluetooth has a worse signal consistency compared to WIFI or other radio sig-
nals. The signals interfere with almost everything. But our end goal is to use it
in an indoor environment so we have to include interference from other devices,
WIFI and moving obstacles (e.g persons around the user).

2.2.1 Distance

As an electromagnetic radiation traveling through space, Bluetooth signal is
being subject to attenuation by propagation. The path loss is usually expressed
in dB and a value can be calculate with a log-distance model given with (2.1).
PL is the average path-loss at the distance d, given with PL(d0) a known
attenuation at the distance d0 .

P̄L[dB](d) = PL(d0) + 10nlog(
d

d0
) (2.1)
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Distance[m] RSSI[dBm] 4RSSI[dBm]
1 −52.4± 6.3 0
2 −57.8± 5.4 -5.4
3 −59.5± 5.1 -7.1
4 −63.9± 5.5 -11.5
5 −69.1± 5.7 -16.7

Table 2.1: Mean and Standard Deviation of RSS (Raw data without any �lter-
ing)

The inverse of this function can be used to determinate an approximation of the
distance to the device.
The path-loss exponent is n=2 for free space. In practical case, the value of n
might highly vary, obstructions and interference can lead to higher values of n.
The table 2.1 shows the the mean and the standard deviation of the RSS from
1 to 5 meter. For n=2, a loss of 6 dB is to be expected. The RSS does decrease
with the same magnitude as predicted and it has been con�rmed in previous
works [1].

Figure 2.1: Measured RSS [No �ltering]

2.2.2 Environment In�uence

Depending of the material[2], the attenuation caused by this obstacle lies be-
tween 2 and 20 dBm. A simple concrete wall have an in�uence of more or less 2
dBm. For a human body, carrying the receiver or transmitter in the pocket, we
can have an attenuation in the order of 5 to 20 dBm, depending on the distance
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to the devices.

2.2.3 Hardware In�uence

The phone (receiver) has also an impact in the reception of the Bluetooth signal.
The place where the antenna is embedded or the architecture of the chipset can
in�uence the signal received.
We can see in the table 2.2 the change of signal strength between 2 phones used
for our measurements.

Phone RSS[dBm] 4RSSI[dBm]
Asus Z0AD −58± 1 +4.9

WIKO Lenny2 −56± 1 +6.8

Table 2.2: Change in RSS between two phones [Same Distance]

2.3 Filter Design

As we saw in the previous section, the Bluetooth signal is prone to interference
from many sources. To read the signal better, I implemented two simple �lters
in order to obtain a more stable RSS through time. It is to be remarked that
some manufacturers might implements their own �lter in their device, same goes
with some Bluetooth Scan Applications.

2.3.1 Normalization

I principally worked with devices with Android but we needed to compare the
data from di�erent phones and we can not exclude the smartphone of Apple.
The IPhone BLE Bundle takes one sample per second while the majority of
Android phones measures 3 to 10 samples per second.

We needed to normalize the data in other words to relate to one sample per
second. I came by a very simple algorithm that takes the di�erent values under
1 second frame and calculate the mean as the new value. Later, I came back
with a second version, which I believe to be more precise and exclude aberrant
sample. The algorithm is given in pseudo-code in the following.
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Algorithm 2.1 Normalization

[tmin, tmax] the 1 second frame
L = [x0, x1..., xn] the RSS values at t between tmin and tmax
for i in range(n):
α = mean(L)
β = std(L) #standard deviation
if α− β ≤ xi ≤ α+ β:
xi → Lnew #put the value in a new list

xnormalize = mean(Lnew)

Figure 2.2: Raw RSS measured from a phone
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Figure 2.3: Normalized data from the same sample

2.3.2 Simple Exponential Smoothing

With the same aim of the normalization seen upper, the Simple Exponential
Smoothing (SES) model allow to average and cut interference from the signal
by giving more weight to recent data. In this fashion, the most recent observa-
tion has more weight than the 2nd most recent and the 2nd most recent has a
bit more weight than the 3rd most recent and so on. The algorithm[3] is given
in the following.

Algorithm 2.2 Brown's Simple Exponential Smoothing

Y is the measured signal and Ŷ is the new value corresponding to the signal
L represents the current level (local mean value) and α denotes a smoothing
constant between 0 and 1.
Step 1
Lt = αYt + (1− α)Lt−1

Step 2
ˆYt+1 = Lt

Step 3
Ŷt+1 = αYt + (1− α)Ŷt

As we can see, setting the value of α allows us to set how much we want to
�lter.
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RSS[dBm] 4RSS[dBm] α
Raw data -69.1 6.4 -

SES -67.7 5.2 0.16
Normalized +SES -67.9 1.8 0.16

SES -68.8 6.6 0.66
Normalized +SES -69.2 3.8 0.66

Table 2.3: Mean and Standard Deviation in RSS for di�erent value of α

2.3.3 Kalman Filter

The previous �lters helped to smooth the RSS lightly but we are looking for
more stability in the signal. We need to suppress the remaining noise. The
Kalman �lter [3] is a state estimator allowing to make an estimation of the
actual state based on noisy measurement.

As a recursive algorithm, it takes in account the past measurement and its
reliability makes it that we can consider to include it in future Bluetooth Scan
Applications for processing the signal while scanning. In the following we will
establish the hypothesis needed to implement the algorithm.
The transition model has for general form the following:

xt = Atxt−1 +Btut + εt (2.2)

zt = Ctxt + δt (2.3)

The current state xt is de�ned as a combination of the previous state xt−1 and
the control input u and the noise ε. Also the measurement is linked to the
actual state by the second relation where δ is the measurement noise. A, B, C
are matrix. In our model, we consider ourselves as static (we are not moving
or not considerably to a�ect the signal i.e. staying in the same room). Also we
ignore any control input in our system.

xt ≈ xt−1 + εt (2.4)

We also consider that our state is equal at our measurement:

zt ≈ xt + δt (2.5)
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Algorithm 2.3 Simpli�ed Kalman Filter [5]

Prediction step
µ̄t = µt−1

Σ̄t = Σt−1 +Rt
Kalman gain
Kt = Σ̄t(Σ̄t +Qt)

−1

Update step
µt = µ̄t +Kt(zt − µ̄t)
Σt = Σ̄t − (KtΣ̄t)

µ describes the prediction and x the true value of the state. Σ de�nes the
certainty of the prediction (variance of the prediction). R is the covariance of
the system noise.
For the RSS measurement, we used a low value for R (R=0.008) as we suppose
that most of the noise is caused by the measurement. Q is the variance of the
measurement i.e the noise in the actual measurements. Q is set in function of
the intensity of the measurement noise. In our case where we had number of
interference around our devices, we took a value of Q around 1.5. For higher
value of Q, the �lter was not reactive enough.
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Figure 2.4: RSSI �ltered with the Simpli�ed Kalman Filter [R=0.008 and
Q=1.5]
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Figure 2.5: A look on the di�erent �lters

RSS[dBm] 4RSS[dBm]
No processing -69.1 6.46

Kalman Filter only -68.9 1.69
SES only -69 2.66
KF + SES -68.8 1.61

Table 2.4: Change in RSS mean and standard deviation for α = 0.195 R=0.008
and Q=1.5

2.3.4 Data collection

I carried two series of measurements. The �rst one was for room level localiza-
tion. The second one was to distinguish the di�erence between di�erent phones
and extract a general model which would be used to calculate the performance
of the di�erent device.
I used 2 to 4 di�erent smartphones on Android to carry out our measurement. A
self-made app was used to scan and get the RSSI from the di�erent doBeacons.
Collecting measurement took 5 min to 1 hour approximately, depending on the
used method.
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Chapter 3

Fingerprinting

The indoor localization we are trying to achieve does not necessitate the exact
position of the user as we only need to know which room the user is in. Room
level localization is likely to be the most suitable localization for our usage as
we only need to trigger actions (e.g turning on or o� the lights) when the user
is or is not in a speci�c room. Having a room-level resolution in our localization
makes our measurements easier as we only need to label the �ngerprints, the
measurements that will be used as a base for localizing the user, with the room
where they were recorded.

3.1 Experimental Setup

3.1.1 Room localization

For this experiment, I divided the o�ce into 3 rooms: Bedroom, Kitchen and
Living Room. 2 doBeacons were attributed per room in exception of the Living
room (the largest room) for which 3 doBeacons were attributed. The phones
were put approximately in the middle of the room as we did not need to know
the exact position of the user. There were no wall between the rooms. As we
saw in section 2.2.2, the in�uence of a wall was around 2 dBm, it didn't matter
in our experimentation.
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Figure 3.1: Floor Plan with the position of each DoBeacons

3.1.2 Fingerprinting on multiple phones

Each phone was inserted into a rotating platform. The platform, a two axis
gimbal (or also called Cardan) whose each axis were motorized, allowed us to
take RSS samples in almost every con�guration of the phone. Usually, the
user has the phone in his hand: the platform as large enough to attach other
accessories to simulate others con�guration. The idea to put a bloc of gel or a
plastic glove with water to emulate the hand was suggested.
A two axis gimbal was enough for our need and allow to avoid the phenomenon
of gimbal lock which happens for the 3 axis gimbals where they lose one degree
of liberty.

The gimbals were made using LEGO Technic parts and they were controlled
with a micro controller.

Figure 3.2: The �rst Gimbal with its motors
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The �rst Gimbal was controlled with an Arduino MEGA. The outer platform
was powered by a stepper motor and the inner platform was powered by a
position servomotors. A motor shield was interfacing between the Step Motor
and the Arduino board.

The axis of the outer gimbal was labeled x with a rotation angle θ. The
inner gimbal was labeled with y and a rotation angle ϕ

Figure 3.3: The di�erent axis on the gimbals
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Figure 3.4: The phone is attached at the inner platform

The other gimbal was controlled by a NTX Lego controller and was motor-
ized by two NTX Lego motors with Position feedback. The second one was less
acurate in the positioning of the platforms.

Figure 3.5: The Second Gimbal
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3.2 Classi�cation

3.2.1 Gaussian Naive Bayes Classi�ers

To classify our �ngerprints in order to predict and recognize further samples and
localize where the user is, we made a simple hypothesis. The values associated
to each class (one class per room) are supposed being distributed according to
a Gaussian distribution.

The �ngerprints x are divided and are attributed to a class c corresponding
to a room of our choice. Then we compute the mean µc and the variance σ2

c

associated to x. As we suppose we measure a new value v from an unknown
class. Then the probability of v given a class c, p(x = v|c) can be computed with

p(x = v|c) = 1√
2πσ2

c

e
− (v−µc)2

2σ2c (3.1)

3.2.2 Phones Classi�ers

If we succeed to establish a phone classi�er, we can obtain a higher resolution
in our localization. To do so, we tried to collect data and numerical values that
could de�ne the phone characteristics in regard of BLE signal.

Having these information could help in the scenario where the users do not
have the same phone to localize themselves. Knowing which phone collected
the �ngerprints and which one is using using the data to localize itself would
increase the �delity in the prediction.

The measurement were made by attaching the phone on the gimbal. For
each angular con�guration, I collected samples for 90 seconds. I repeated the
process for di�erent distances. Every meter, a DoBeacon was placed in front
of the gimbal, with a light shift to avoid to have all the beacons aligned. Not
every DoBeacon was con�gured the same
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Chapter 4

Results

4.1 Room Localization

The Asus phone is the one that collected the �ngerprints.

Phone Accuracy

Asus >99%
Wiko ~66%
Lenovo ~90%

Table 4.1: Results with 7 beacons and no o�set

As we can expect, the phone that collected the �ngerprints has the higher
accuracy. If we add an o�set for the Wiko phone, we can obtain a higher
accuracy. But when we are in the least favorable con�guration (one beacon per
room), our accuracy drops under 33% for almost every phone. Some beacons
are at the limits between two rooms, as we can see in �gure 3.1, which can
confuse the prediction. I can deduce two important points:

First, for a low number of DoBeacons, the Gaussian Naive Bayes Classi�er
fails to be accurate enough to predict the right room.

Second point, the �ngerprints may be not enough. With a more large
database, we could obtain a higher accuracy. But we want the user to avoid
collecting too much �ngerprints as it is time consuming.
The answer can lie in di�erent solutions. We can use other classi�ers (e.g K-
Nearest Neighbors). Dimensional reduction[6] is something which can be applied
as well.

In parallel, establish a model of the receiver can increase the likelihood to
�nd the right room.

Actually the room-level localization with the Crownstone is working with
the Iphone.
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4.2 Establishment of a phone model

Collecting �ngerprints with several geometric combination of the phone position
allow us to obtain a better view on the characteristic of the phone. Here we
tested two phones from the same manufacturer and sold under the same name.
The �rst one was from late 2015 to early 2016 and the second one was from
mid-2016. As we can see in the two following �gures, the signal received were
di�erent. The global conditions of the collecting process were the same and the
same App and DoBeacons were used.

Figure 4.1: RSS of the phone n°1 [no post processing]
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Figure 4.2: RSS to the phone n°2 [No post processing]

Then, we applied the two �lters mentioned before (Simple Exponential Smooth-
ing and the simpli�ed Kalman Filter) making easier the read of the signal. We
can notice one of the optimal con�guration for receiving the signal for the phone
1 on �gure 4.3. At 3m, the RSS is -49.5 dBm and the con�guration of the phone
is θ = 90◦ by the axis X and ϕ = 135◦.

Figure 4.3: RSS of the phone n°1 [Filtered]

For the second phone, for 3m, we can �nd the same con�guration, with a
RSSI of 51.4 dBm.
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Figure 4.4: RSS of phone n°2 [Filtered]

I collected the di�erent RSSI from 1m to 7m and look on the mean and stan-
dard deviation of the di�erent dataset. The measurements could be improved
if the same kind of beacons was used.

Phone n°1 Phone n°2
Distance RSS [dBm] 4RSS[dBm] RSS [dBm] 4RSS[dBm]

1 -57.5 3.6 -55.7 1.8
2 -57.3 4.2 -56.8 2.6
3 -58.0 4.1 -57.6 2.8
4 -66.2 3.8 -64.2 2.2
5 -61.2 4.0 -58.4 3.0
6 -69.4 3.0 -69.4 1.7
7 -68.5 2.6 -69.4 3.0

Table 4.2: Mean and Standard deviation translating the behavior of the 2 phones
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Chapter 5

Conclusion

Room level localization can be achieved especially if we can outline the phone's
characteristics.

The results showed that it is possible to �nd these parameters if the noise
of the Bluetooth signal is deadened. The logical next steps would be:

-to �nd optimized parameters for �ltering the signal.
-to �nd the parameters for phone classi�er and model the behavior.

Playing with both room classi�er and phone classi�er would improve the �delity
of the �ngerprinting method.

About the internship and self-analysis

To conclude this report, I will talk about the experience I gained from these 3
months abroad. This kind of internship was a �rst to me, and I lacked experience
on many levels.

I would like to start with what I learned. What I mainly gained were not
technical skills or neither language skill even if it is where I mainly improved
during my stay in the Netherlands. The most valuable matter I learned there
is where are my �aws.

- Mindset: even thought I prepared myself, I stayed a student. I have to go
out of this comfort zone and think myself as a future engineer and accept to be
an employee.

- Expressing myself. Good team work goes through communication. I did
not express myself in a satisfactory fashion.

- Obstinacy. To not confuse with autonomy. Accept to go out my own way
and follow the instructions.
On my professional project, an environment similar to the one o�ered by DoBots
could be where I can thrive if I choose the business world : a short hierarchy
chain, a balance between autonomous work and team work sessions seems to be
most adapted for. But as I said, I need to grow more and work on myself.
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