
Master’s Thesis

Evaluation of Machine Learning techniques for Passive Presence

Detection

Andreas Sofos
443760

August 30, 2017

Academic Supervisor:
Dr. Michel van de Velden

Company Supervisor:
Anne C. van Rossum

MSc Econometrics and Management Science: Operations Research and Quantitative Logistics
Erasmus School of Economics, Erasmus University Rotterdam

1



The work in this report was performed at Crownstone. Their cooperation is hereby gratefully acknowledged.

2



Abstract

Passive Presence Detection is the task of detecting when a person is present or not, without the need
for them to carry any wireless device. For that, a wireless sensor network consisting of Bluetooth Low
Energy (BLE) devices, often called nodes or beacons must be employed in an area of interest in which
their positions are not considered known. Beacons transmit and receive BLE signals and they report the
Received Signal Strength (RSS) of them, counted in decibels. The RSS data can be explored in search
of patterns that can classify presence versus non-presence of people near a wireless sensor network.
Machine Learning and Signal Processing techniques are used to tackle the classification problem of
Passive Presence Detection. Specifically, Random Forests and two versions of a Sparse Representation-
based classification model are employed. Random Forests create an ensemble of classification trees,
based on random features. Each of the trees votes for a class. The Sparse representation-based classifier
exploits the theory of compressed sensing to find sparse representations of the RSS data, i.e new data
matrices which contain only a few non-zero elements. Compressed sensing states that if a data set has
a sparse representation in some overcomplete basis, then a high quality reconstruction is possible with
much fewer measurements than we would normally need. This method finds an overcomplete basis for
each class and classifies the input data based on the most accurate reconstruction. Two data sets were
used under various experimental settings to verify the efficacy of the proposed methods. Both Random
Forests and the Sparse Representation-based classifier report 100% classification accuracy.

3



Contents

1 Introduction 5

2 Problem Description 6

3 Literature Review 8

4 Data 10
4.1 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 RTI Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Crownstone Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 RTI Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Crownstone Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 File Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 RTI Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.2 Crownstone Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Methodology 13
5.1 Classification on the Raw Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.2 Random Forests Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Sparse Representation-based Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Compressed sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 The Orthogonal Matching Pursuit (OMP) algorithm . . . . . . . . . . . . . . . . . . . 22
5.2.4 The K-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.5 The K-SVD algorithm (with OMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.6 K-SVD vs PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.7 Sparse Representation-based Classification Algorithm using K-SVD . . . . . . . . . . 29
5.2.8 Sparse Representation-based Classification Algorithm using the Training Sets as Dic-

tionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.9 Sparse Representation-based Classification vs k-Nearest Neighbor . . . . . . . . . . . . 31

6 Results 33
6.1 Classification on the Raw Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Sparse Representation-based Classification Algorithm using K-SVD . . . . . . . . . . . . . . . 34
6.3 Sparse Representation-based Classification Algorithm using the Training Sets as Dictionaries 35
6.4 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusion 38

8 References 39

4



1 Introduction

Wireless sensor networks have become popular in academic research as well as in practice as they can be

easily applied to a wide range of tasks in our lives. They consist of distributed sensors that can monitor

the state of an area of interest and act in a cooperative fashion in order to collect and process data, thus

creating a smart environment.

Normally, for object detection applications, a person needs to carry a smartphone or smartphone peripheral

(a smart watch, bracelet, etc.). However, a Bluetooth radio can also be used in a passive setup. By continu-

ously monitoring the signal drops from other sensors it is possible to infer if there are objects that interfere

with the Bluetooth signals.

This study examines the task of Device-free Passive (DfP) Presence Detection, that is the detection of

a person without the need for any physical devices i.e. tags or sensors. It is a subject that has become

an emerging research field. The requirement of a person holding a device which can assist the localization

process can hardly be met in many applications. For example, in an intrusion detection system, one cannot

expect a thief to carry any device. Also, in applications which aim to use technology to improve a person’s

daily living, the detection process cannot rely on a person’s willingness or ability to keep any type of hard-

ware close to them all the time.

The variations of the Received Signal Strength (RSS) data, gathered from a DfP detection indoor envi-

ronment are examined as part of this study. Machine learning methods are exploited with the purpose of

detecting human presence based on different data patterns.

5



2 Problem Description

One goal of home and office automation is that devices respond to someone’s presence. For instance, lights

can be turned on when a person enters a room. To perform such functions, it is necessary to know when

people are inside the building.

In DfP detection and localization systems, Bluetooth Low Energy devices can be employed. These de-

vices, often called radio frequency sensors, nodes or beacons, use wireless personal area network technology

for transmitting data over short distances. By capturing the changes of the RSS indicators reported by these

devices, we try to derive the presence of a subject based upon these changes. RSS is a measure of quality

of a received signal to a Bluetooth Low Energy device, such as a Crownstone chip, counted in decibels. The

fundamental idea, is that objects cause disturbances in the radio environment which can be exploited to

detect their presence. The human body, for instance, changes the pattern of radio frequency signals when

present. Due to the fact that the human body contains about 70% water, it acts as an absorber by attenu-

ating the signal. Signal strength is also influenced by obstacles such as walls and doors, which may provide

additional information.

This research aims to use machine learning techniques to detect presence in an environment where Crown-

stone chips are installed. Detection refers to changes in an area of interest, so the purpose of this study is

to analyze the spectrum and see how changes in RSS can be robustly matched with the presence of people.

This thesis internship is an initiative of Crownstone (2016), a startup in Rotterdam that brings technol-

ogy to detect people and devices into every building. The Crownstones up to now can estimate a person’s

position only through their smartphone. The Crownstones (Figures 1-2) measure current and voltage to

detect devices and examine their usage. (http://crownstone.rocks)

6



Figure 1: Crownstone Plug

Figure 2: Built-in Crownstone

The problem as described above leads to the following research question:

Which Machine Learning and Signal Processing methods perform best under various experi-

mental settings for the task of device-free presence detection?

In particular, this research examines how methods are affected by the number of sensors in a wireless

sensor network and how quickly algorithms accurately predict the state of whether there is presence of a

human or not in an area of interest.

7



3 Literature Review

Presence detection and localization techniques based on radio signals have attracted the attention of re-

searchers for years and many methods have been proposed. However, most of them require the target to

carry a tracking device so that it actively participates in the localization process. On the other hand, de-

vice free localization is an emerging research field which was first introduced by Youssef, Mah, & Agrawala

(2007). For the purpose of this research, I cannot rely either on any active participation of people in a

training phase, such as radio map construction or in predetermined node locations. This research aims to

exploit the benefits of modern tools of Machine Learning and Signal Processing theory, working on RSS data

sets. At least to our knowledge, this approach is quite novel in the field of Device-free Presence Detection.

Literature on Image Classification is more related to the methods used in this study.

Youssef et al. (2007) use statistical methods, such as moving average and moving variance in order to

detect changes in the RSS by comparing the static state of the environment, i.e the long term signal behav-

ior to the current state, based on threshold values. Their approach involves a training process that consists

of a construction of a passive radio map. It requires a training procedure in which a person, without the

assistance of any device, remains in the area of interest and the signal strength measurements are recorded.

Another popular application in the field of Device-free Presence Detection is called Radio Tomographic

Imaging (Wilson & Patwari, 2008). It is based on the fact that as an object is moving within a wireless

network, the attenuation it causes can be imaged as a function of space for detection purposes. This is

possible by measuring the RSS on many different paths in the network. The linear model that is suggested

by Wilson and Patwari (2008) is based on the known locations of the nodes in a wireless network. In the

context of this research, information about the locations of the nodes is not provided.

A Robust Face Recognition method, based on sparse representations of images is presented by Wright, Yang,

Ganesh, Sastry, & Ma (2009). Compressed sensing theory (Donoho, 2006) is applied for computing sparse

representations of data based on an overcomplete dictionary of base vectors. This dictionary is comprised

of training samples from all classes. The intuition behind this is that finding the sparsest representation of

an image for a given dictionary can reveal the class the image comes from. The test data can be expressed

as a linear combination of the training samples from the same class. One can classify the input test data by

calculating these linear approximations, each time using only training samples from a single class. The best

approximation in terms of the minimum residual between the initial and the reconstructed input samples

8



reveals the right class. The algorithm correctly identified the subjects even when the images were corrupted

(beyond 50%), a case in which the human eye can barely recognize images as face images.

Wang, Guo and Zou (2016) attempted to use this methodology for face recognition to formulate the Device-

free Localization Problem as a Sparse Representation-based Classification problem. Again, there are impor-

tant differences compared to this study as mentioned before, i.e the position of the nodes are known and

the training sets are constructed by a fingerprinting method of collecting RSS values by moving a target in

every possible position. However, by reviewing the RSS matrix as an image matrix they managed to turn

the DfP concept into an image classification problem and solve it even when the image is influenced by noise

and outliers (as in corruption and disguise in image classification).

In this research, I utilize the theory of sparse representations by experimenting on different dictionaries

and applying sparse representation based classification methods to two datasets. At the same time, regular

machine learning classification techniques are tested and their performance is evaluated.

9



4 Data

This study uses two different data sets, an online data set called Radio Tomographic Imaging (RTI) Data

Set and a data set (Crownstone Data Set) collected for the purpose of this research at Crownstone offices.

The RTI data set contains RSS values collected by 28 nodes. This gives us the opportunity to obtain data

sets of different dimensions, by keeping RSS values from many different subsets of nodes and perform a series

of experiments that can give information on how many nodes I should employ in the context of creating

our own data set. The Crownstone data set contains RSS values collected by five nodes, which is a more

realistic number of nodes for a smart home environment. A lower dimension data set is produced from the

Crownstone data set, for the purpose of this study.

In the following subsections I present the set ups of the data collection processes, the format of the data and

a description of the files of the data sets.

4.1 Experiment Description

4.1.1 RTI Data Set

The RTI Data Set (Wilson & Patwari, 2008) is used for the purpose of this study. This data is collected

through 28 Crossbow TelosB nodes, placed in an outdoor environment, in a square perimeter of 21×21 feet.

Each node is placed at three feet distance from its neighboring node. Inside this area, there are two trees.

Figure 3 shows the map and a photo of this area. The transmission protocol is the IEEE 802.15.4, in the

2.4GHz frequency band. Only one node transmits at a time, and each one of them has a unique ID attached,

from 0 to 27.

Figure 3: RTI map and photo (Wilson & Patwari, 2008)

10



4.1.2 Crownstone Data Set

This data set is collected at Crownstone offices, in an area which consists of two rooms forming an L shape

and separated by a bookcase in between. Only two tables were inside this area, as depicted by the rectangle

shapes. The floorplan is shown in Figure 4. In the whole area, five crownstones were deployed at random

distances between them, determined by an estimation of the possible distances of the sockets in a house, in

order to realistically simulate a real smart home environment.

Figure 4: Crownstone floorplan

4.2 Data Format

4.2.1 RTI Data Set

Each line in a data file represents the RSS values from each of the nodes to the reporting one, the ID of

which is indicated in the first column of every line. The last three values are the time the measurement was

received, in the format of HR MIN SEC. In total each file contains 32 columns. Since a node cannot transmit

to itself, this cell is filled with the value -45, as this column is meaningless and is given a value close to the

mean (RSS values vary approximately between 0 and 100). An example line looks like this:

3, -44, -52, -55, -45, -76, -93 ... 10 2 46

The data collection rate varies between 70-80 measurements per second.

11



4.2.2 Crownstone Data Set

Similarly to the format of the Radio Tomographic Imaging Data Set, each line represents the RSS values

from each of the nodes to the reporting one, the ID of which is indicated in the first column of every line.

Again, the value of -45 was given to the cells that represent a pair of the same node ID.

4.3 File Descriptions

4.3.1 RTI Data Set

empty.csv: The area is completely vacant. Each node has reported around 137 RSS vectors and in total

the file contains 3785 measurements spanned over a 53 seconds period.

m-1.csv: One person walks at constant velocity in two loops around a square loop path. Each node

has reported around 70 RSS vectors and in total the file contains 1982 measurements spanned over a 28

seconds period.

4.3.2 Crownstone Data Set

baseline.csv: The area is completely vacant. Each node has reported around 1000 RSS vectors and the file

in total contains 5759 measurements spanned over a period of approximately 20 minutes.

presence.csv: One person is walking around the area, spending half of the time of this experiment in

each of the two rooms. Each node has reported around 500 RSS vectors and the file in total contains 2729

measurements spanned over a period of approximately 10 minutes.

12



5 Methodology

The task of Passive Presence Detection is a classification problem. A method should be able to process input

data, which in this case is RSS data, and deliver a prediction on whether the data reveal human presence

or not. For this reason, two main classification methods are employed in this research. The first one is a

machine learning method, called Random Forests that works on the raw data sets, as they are described in

Section 4. The second method, called Sparse Representation-based classification, process the data in a way

that it produces higher-level representations of it and then performs the classification task. This method is

based on Signal Processing theory which is discussed in the current section. Two versions of this method

are presented, as well as algorithms that are involved. The Sparse Representation-based classification is

compared with the k-Nearest Neighbor algorithm, in terms of finding similarities and differences that can

explain the choice of the second method for this study.

As a general data preprocessing step, the first column containing the ID of the reporting node as well

as the last three columns reporting the time were removed.

A Matlab script was created that reduces the size of the data set by keeping information only from a

subset of nodes. In more details, the script keeps only the rows and columns of the file that correspond to

the reporting and transmitting nodes of a by the user chosen subset respectively. This gives us the opportu-

nity to experiment with different number of deployed nodes, and to compare the accuracy of the results. The

fewer number of nodes used, the more realistic and interesting a presence detection application becomes.

5.1 Classification on the Raw Data Sets

5.1.1 Data Processing

The ’empty.csv’ and ’m-1.csv’ data sets include samples from the ’non-presence’ class and the ’presence’

class respectively.

After having applied the preprocessing step to both files, thus removing the first column including the num-

ber of the reporting node and the last three columns including the time (as described in subsection 4.2),

the files were merged and every single line measurement was given a label, either ’0’, corresponding to ’non-

presence’, if the line comes from the ’empty.csv’ file or ’1’, corresponding to ’presence’, if the line comes from

the ’m-1.csv’ file. The exact similar data processing procedure was performed to the second data set.

Each instance of the data has as many attributes as the number of nodes used in a specific experiment.

13



5.1.2 Random Forests Classification

For the classification task, the mechanism of Random Forests was used, that is ”a combination of tree predic-

tors such that each tree depends on the values of a random vector sampled independently and with the same

distribution for all trees in the forest” (Breiman, 2001, p. 1). In the following description of this method, I

first introduce the decision tree classification method (Tan, Steinbach, & Kumar, 2014).

A decision tree consists of nodes and leaves. The first node is called root and the final nodes are called

leaves. Each node is split into either two partitions (binary split) or more than two non-overlapping parti-

tions (multi-way split). In order to explain how a split is determined and which attribute should be used

for the split, an impurity measure term is introduced. A tree should go from high impurity to low impurity.

Minimum impurity means that each leaf corresponds to exactly one class. As we move from the root to

the leaves impurity levels should decrease. Minimum impurity means that each leaf corresponds to exactly

one class. For continuous data, as in the case of the current research, the numbers must be discretized in

some form, usually by finding a threshold which will determine the split. Different measures of impurity can

be employed in order to determine the best split, such as the Gini Index, the Classification Error and the

Entropy. If I let p(i|t) denote the proportion of cases belonging to class i at tree node t and let c denote the

number of classes, then:

Gini(t) = 1−
c∑

i=1

p(i|t)2 (1)

ClassificationError(t) = 1−maxip(i|t) (2)

Entropy(t) = −
c∑

i=1

p(i|t) log2 p(i|t) (3)

Finally, a stopping rule must be set regarding the growth of a tree. A node cannot be further expanded

if all cases belong to the same class or have similar attribute values or the number of cases is below some

threshold value.

After the construction of the tree classifier its performance must be evaluated. The training data is a

part of the data set used to train the classifier. After this process, another part of the data set, called test

set which is never seen before by the classifier, is used to assess the model’s predictive performance. The

14



error on training data and the generalization error (on test data) could be considered in this case. If we

keep adding nodes to a tree until all cases belong to the same class, the training error will be minimized,

however we come across the problem of data overfitting. This means that the classifier is not optimal for

the test set. On the other hand, a very simple classification tree might lead to misclassification of many

instances. Consequently, there is a trade off between size and stability. In order to deal with this issue, a

procedure called cost-complexity pruning is utilized. The tree is grown to its full extend, which means that

splitting no leaf node further will improve the accuracy of the training data. As a second step, subtrees that

are not contributing significantly towards classification accuracy are removed. The term cost-complexity is

defined as the error rate divided by the number of nodes in the tree and one should decide at which value

of this term to stop. If the error rate is denoted by ER and NoN is the number of nodes in a tree then the

cost-complexity measure, denoted by CC, is simply given by:

CC =
ER

NoN
(4)

For that, the out-of-sample predictions of pruned trees need to be determined. The accuracy measure (5) is

used in this research to evaluate the performance of a classification tree, as well as that of a Random Forest.

It is defined as the fraction of the number of correct predictions (true positive (TP) and true negative (TN))

over the total number of predictions (NoP).

Accuracy =
TP + TN

NoP
(5)

Following this short introduction on classification trees, I proceed by with the Random Forests algorithm.

Based on a training set T, new bootstrap training sets Tk are created by sampling with replacement. The

algorithm creates as many bootstrap training sets as the number of trees we want to grow to form a Random

Forest. Each training set is then used to grow a tree-classifier. If the data consists of N input variables, then

a subset M<N of these input variables is randomly selected at each node to determine the best split. The

parameter M is held constant during the whole forest growing procedure.

As far as the accuracy of Random Forests is concerned, Breiman (2001) introduced the definition of the

generalization error of a forest in terms of the margin function

mg(X,Y ) = avkI(hk(X) = Y )−maxj 6=Y avkI(hk(X) = j) (6)

15



where the training set is randomly created from the distribution of the random vector Y,X and h1(x), h2(x), ..., hk(x)

form the ensemble of classifiers in the forest. The margin function measures the difference between the av-

erage number of votes for the right class and the average vote for any other class. The generalization error

PE∗ = PX,Y (mg(X,Y ) < 0) (7)

is then defined as the probability that the margin function is negative. From the Strong Law of Large Num-

bers, as the number of trees increases, the generalization error converges, so Random Forests do not overfit.

The generalization error depends on two factors. The strength of the individual classifiers and the correlation

between any two classifiers in the forest. A tree with a low error rate is a strong classifier. Increasing the

strength of the trees decreases the error rate of the forest. On the other hand, increasing the correlation

between two classifiers increases the forest’s error rate.

The Random Forest mechanism can internally calculate an unbiased estimation of the generalization er-

ror. For each bootstrap training sample that is drawn from the initial training set with replacement, 30%

of the observations are left out of the sample and are not used in the construction of this specific classifier.

These are used as test sets and are fed to the classifiers that were constructed from a training set that does

not contain these observations. This is called out-of-bag classifier and the error rate of this classifier is the

out-of-bag estimation of the generalization error. It should be noted that the out-of-bag error is a statistical

measure rather than an actual classifier.

The data set is split into a training set containing 70% of the observations and a test set of the remaining

30%, randomly chosen without replacement that is used to assess the performance of the models. In another

experiment, only a few random measurements, namely 210 samples are used as a test set and the rest form

the training set. A Random Forest is trained, each time using a different value of the M parameter, among

all possible ones. The number of trees are fixed at 500 in all experiments. Finally, the test set is used for

predicting the right class and the accuracy of this process, which is defined as the percentage of the successful

predictions over the number of samples of the test set, is calculated.

The code implementing this method is written in R programming language for statistical computing with

the use of the ’randomForest’ package (Liaw & Wiener, 2002).

16



5.2 Sparse Representation-based Classification

The main idea that led us to explore the methodology of Sparse Representation-based Classification, a pop-

ular technique in the field of Image Processing, is that a matrix with RSS values can be seen as an image

in which each single RSS value corresponds to a pixel value. For example, a state in which no people are

present in an area of interest and a state in which one or more people are present can be considered as

different images, in terms of the RSS values. In the next section, I aim to provide an insight on why this

method may be useful for this research by presenting the basic theory of compressed sensing.

5.2.1 Data Processing

All data matrices are rotated, as this was an input data requirement of the main algorithms employed in

this section, so from now on I refer to a data set with n1 measurements and n2 attributes (number of nodes)

as n2× n1.

5.2.2 Compressed sensing

In signal processing theory, sampling, i.e the transformation of a continuous time signal to a discrete time

signal is of vital importance in many applications. The Nyquist-Shannon sampling theorem (Shannon, 1949)

states that a band-limited function, i.e a function whose Fourier transform is zero above a certain finite

frequency, can be exactly restored from equally spaced samples if the sampling frequency is at least twice

the highest frequency contained in the signal. The compressed sensing theory (Donoho, 2006) which has

gained significant recognition in the last years, uses sparse representations (Elad, 2010) to sample a signal at

a much lower than the Nyquist rate. The term sparse implies that most of the elements of the data are zero

and only a small number of elements have a non-zero value. The key idea of compressed sensing is that if a

signal has a sparse representation in some overcomplete basis, then a high quality reconstruction is possible

with much fewer measurements than we would need according to Nyquist. To explain overcompleteness, let

V = {vi}i∈J be a set of vectors on a Banach space B. A subset of vectors in V is complete if every element

in B can be approximated in norm by finite linear combinations of elements in V. If we remove a vj from

the subset V and the remaining vectors still form a complete set, then V is called overcomplete. A Banach

space is a vector space in which a norm is defined.

17



For the purpose of this research, a dataset can be considered as a signal so both terms are equivalent.

Assume that a signal with n elements that contains only m non-zero components, where m is much smaller

than n, will be called m-sparse. A straightforward approach to find these m elements is to iterate over all n

elements of the signal. The objective of compressed sensing is to capture this information in the m-sparse

signal of length n with many fewer than n measurements. Sparsity is the key in the success of compressed

sensing, otherwise the regular sampling theorem must be applied. If the signal is assumed to be m-sparse,

then on average only O(mlog(n)) measurements are required to reconstruct it.

In order to proceed in more depth in the theory of compressed sensing the following notations are used.

Consider a matrix Y ∈ Rn×N , a matrix D ∈ Rn×K and a T0-sparse matrix X ∈ RK×N . Y represents an

RSS matrix in which n is the number of nodes used in the experiment to collect the RSS values and N

is the number of observations. X is the sparse representation of Y with respect to an overcomplete basis

D, usually called dictionary in this field. The problem is to find X when Y and D are given and there is

an underdetermined system of equations, that is when n<K. Based on compressed sensing theory, this is

possible under certain conditions of the matrix D and the sparsity level of the data. The higher the sparsity

level the higher the probability of a successful recovery of X.

If we know beforehand that X is sparse we can reconstruct it by solving the following optimization problem

(Kanso, 2009, p. 17):

X̂ = argminX‖X‖0

subject to Y = DX

(8)

where ‖X‖0 is the l0-norm of X, defined as the number of non-zero elements in X. This problem is however

a non-convex NP-hard problem. In order for this problem to become computationally tractable the l0-norm

of X is replaced by the l1-norm of x. The l1-norm is defined as the summation of the absolute values of

all components of a vector or a matrix. In mathematical notation ‖p‖1 =
∑n

j=1 |pj | for a vector p ∈ Rn.

The intuition behind the hypothesis that the l1-minimization problem induces sparsity is explained in the

following example.

Suppose we are looking for a line that matches two points in a two-dimensional space but only one point is

known. Then there will be an infinite number of solutions. If for instance, the point is [10,5] and a line is

18



defined as y=ax+b, then we want to find a solution to the equation:

(10 1)×
(
a

b

)
= 5

Obviously, all points belonging to the line b=5-10a are solutions.

The points for which the l1-norm equals a constant c look like this rotated red square.

Figure 5: l1-norm shape

The only sparse points on this shape are the ones on the tips, where either the x or the y coordinate is zero.

The process of finding a sparse solution could geometrically be seen as making the c constant large enough

so that the red shape touches the blue line (b=5-10a), as shown below.

19



Figure 6: Sparse Solution

Because of the nature of the l1 shape, there is a very high probability that the touch point will be at a tip

of the shape and since all tips are sparse points, the solution will also be sparse. In this example, the touch

point is the sparse vector (0.5 0), which is the solution with the smallest l1-norm out of all the possible

solutions in the blue line.

In high dimensional space the probability of touching a tip could be even higher, since the l1 shape will

have more tip points and this explains the reason why the l1-minimization problem might be capable of

inducing sparsity.

As a result, the initial l0-minimization problem is replaced by

X̂ = argminX‖X‖1

subject to Y = DX

(9)

which is a convex optimization problem. In case the data contain inaccurate measurements or some form of

20



noise in general, as it usually happens in real cases then the optimization problem becomes

X̂ = argminX‖X‖1

subject to ‖Y −DX‖2 ≤ e
(10)

where e depends on the amount of noise. Eldar and Kutyniok (2012, p. 30) present some common noise

models under which sparse signal recovery can be stably performed. The l1-minimization problem can be

solved by many efficient algorithms, such as the so called pursuit algorithms, one of which will be discussed

in the following subsection.

As it may be obvious already, one factor that affects the success of finding a sparse representation of a

signal is the choice of the dictionary D. It is the nature of this basis that makes X a sparse matrix and so

finding the sparsifying domain is crucial in compressed sensing applications. For example, a sinusoidal wave

is not sparse in the time domain, but in the frequency domain it is just an impulse, as shown in Figure 7.

Figure 7: Sparsifying domain of sinusoidal wave (Kanso, 2009)

The right graph of Figure 7 is the result of Fourier Transform of the sinusoidal wave, shown in the left graph.

The formula of Fourier Transform is

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt (11)

which transforms a signal from time to frequency domain, where ω is the angular frequency. For the sinusoidal

wave the result of this transformation is shown below:

x(t) = sin(2πst)− > X(ω) =
1

2
[δ(ω + s) + δ(ω − s)] (12)

21



where δ(x) is the Dirac delta function defined by the properties:

δ(x) =


0 x 6= 0

∞ x = 0

(13)

and ∫ ∞
−∞

δ(x)dx = 1 (14)

Figure 7 visualizes the result of the above analysis for a certain time and frequency window. Since the two

representations of the sinusoidal wave are equivalent, one can say that when the signal is represented in the

frequency domain, which can be considered as the dictionary, then the signal clearly becomes sparse.

Similarly, in the current research, a dictionary must be found with respect to which an RSS matrix can

provide a sparse representation. If there is no prior knowledge of this dictionary, one has to find the opti-

mal dictionary, in terms of the sparsest representation that this dictionary can yield. One such dictionary

learning algorithm is the K-SVD algorithm, presented in Section 5.2.5.

5.2.3 The Orthogonal Matching Pursuit (OMP) algorithm

The Orthogonal Matching Pursuit algorithm deals with underdetermined equations in a greedy way in order

to recover sparse representations of input data. Elad (2010, p. 37) gives a detailed description of the steps

of the algorithm which is presented below.

In order to explain this greedy approach I assume that (1) has an optimal solution value equal to 1, meaning

that X has only one non-zero element in the optimal solution. Thus, Y is a multiple of some column in D.

This column can be found by applying K tests, one per column of D. The notation ‖A‖F is the Frobenius

norm defined as ‖A‖F =
√∑

ij Aij
2. The j-th test can be performed by minimizing e(j) = ‖djzj − Y ‖F ,

leading to zj =
dj

TY

‖dj‖2F
. The Sweep step of the algorithm calculates the error values in a similar fashion. If I

plug zj into the error expression I have:

e(j) = minzj‖djzj − Y ‖
2
F = ‖

dTj Y

‖dj‖2F
dj − Y ‖22 = ‖Y ‖2F − 2

(dTj Y )2

‖dj‖2F
+

(dTj Y )2

‖dj‖2F
= ‖Y ‖2F −

(dTj Y )2

‖dj‖2F
(15)

In case the error is zero then a solution has been found. The above test is equivalent to ‖dj‖2F ‖Y ‖
2
F = (dTj Y )2.

However, if (1) is known to have an optimal solution value of T0, then there are KT0 subsets of T0 columns

of D, and it might be computationally expensive to enumerate all these subsets (O(KT0)). As a result, the

greedy approach of OMP searches for local optima in order to approximate Y from a set of columns of D. If

22



the error is below a predefined threshold, the algorithm stops.

The so-called Update Provisional Solution step minimizes the term ‖DX−Y ‖2F with respect to X, such that

its support is Sk. The algorithm forces the columns in D that are part of the support Sk to be orthogonal

to the residual rk and this is why the algorithm is called Orthogonal Matching Pursuit.

Algorithm 1 Orthogonal Matching Pursuit Algorithm

1: Initialization: Set k=0, initial solution X0 = 0, initial residual r0 = Y − DX0 = Y , initial solution
support S0 = Support{X0} = ∅

2: while ‖rk‖F ≥ e0 do
3: k=k+1.
4: Sweep: Compute the errors e(j) = minzj‖djzj − rk−1‖2F for all j using the optimal choice zj =

dj
T rk−1

‖dj‖2F
5: Update Support: Find a minimizer, j0 of e(j): ∀j 6∈ Sk−1, e(j0) ≤ e(j), and update Sk = Sk∪{j0}.
6: Update Provisional Solution: Compute Xk, the minimizer of ‖DX−Y ‖2F s.t. Support{X} = Sk.
7: Update Residual: Compute rk = Y −DXk.

5.2.4 The K-means algorithm

A short description of the K-means algorithm will be given in this section. It is important to note that

K-means is not used in the current research, however it is mentioned in order to help the reader better

understand the functionality of the K-SVD algorithm (5.2.5), which is a generalization of K-means and is

used in this paper.

The procedure of K-means assigns a set of data points to K clusters, where the K parameter is speci-

fied by the user. Each cluster is represented by a group average (centroid). Let Y be the N × n observation

matrix, D the n × K centroid matrix and X a N × K indicator matrix assigning observations to the K

clusters. As an initialization step, K initial centroids should be specified to form D(0). Then, the algorithm

associates each point of Y to the closest centroid by solving the following minimization problem, where DT

and XT are the transpose of D and X respectively.

minX‖Y −XDT ‖2F

subject to D = (XTX)−1XTY

(16)

As soon as all observations have been assigned to a centroid, the first step of K-means has been completed

for a certain iteration. The second step involves the update of the centroid matrix D, in which the new

cluster centers are calculated based on the points that already belong to each cluster. The algorithm iterates

between these two steps until the centroid matrix D no longer changes.

23



Algorithm 2 K-means algorithm

1: Initialization: Set the initial centroid matrix D(0) ∈ Rn×K . Set J=1.
2: while Centroid matrix changes do
3: Assign each object to the group that has the closest centroid.
4: When all objects have been assigned, recalculate the centroids.
5: J=J+1.

5.2.5 The K-SVD algorithm (with OMP)

The most popular and widely used algorithm for dictionary learning is the K-SVD algorithm (Aharon, Elad,

& Bruckstein, 2006), a generalization of the K-means clustering process. Instead of using a predetermined

dictionary, this unsupervised method tries to fit a dictionary to the data, so that it best represents each

member of the training signals set. At each iteration it alters between sparse coding of the data and an

update of the vectors or, as they are usually called in this setting, atoms, of this dictionary as a learning

process to better fit the data. The goal is to find a dictionary that yields sparse representations for a train-

ing signal. This process has been proved to create dictionaries that outperform predetermined dictionaries

(Aharon et al., 2006).

The K-means clustering method, as seen in the previous section, applies two basic steps in each itera-

tion of the algorithm. First, given several vectors {dk}, k=1,...,N, it clusters the training instances to the

nearest neighbor and after that it updates these vectors to better fit future instances. K-SVD follows a

similar two-step procedure by finding the coefficient matrix X given a dictionary D and then updating the

dictionary in a second stage. While in K-means each sample is represented by only one of those vectors, based

on their Euclidean distance, in K-SVD each example can be expressed as a linear combination of several

vectors of the dictionary. This explains why it is considered a generalization of K-means. In the extreme case

that the algorithm is forced to use one dictionary column per sample and a unit coefficient for this column,

it exactly behaves like the K-means algorithm. However, because of the fact that not only one column of the

dictionary can represent a sample, it should be noted that the algorithm does not actually perform clustering.

The K-SVD algorithm is flexible and can operate together with a pursuit algorithm, which in our case

is the Orthogonal Matching Pursuit. It aims to find the best possible dictionary by solving the following

minimization problem:

minD,X‖Y −DX‖2F

subject to ‖xi‖0 ≤ T0, ∀i
(17)

24



As defined in section 5.2.2, Y ∈ Rn×N is a matrix of N observations with n attributes each, D ∈ Rn×K is

the dictionary and X ∈ RK×N is a T0-sparse vector which contains the representation coefficients of Y.

K-SVD restricts the value of K to be less than the number of measurements of Y, so it must hold that

K < N , otherwise the solution is considered trivial. The algorithm applies the two steps described above.

It employs a pursuit algorithm to tackle

minxi
‖yi −Dxi‖2F

subject to ‖xi‖0 ≤ T0
(18)

and then updates one column of D, both at each iteration. The updating process involves fixing all columns

apart from one, dk and finding a new column to replace dk as well as new values for its coefficients that

best reduce the overall mean squared error E = ‖Y −DX‖2F . In order to describe this in more details, the

objective function can be rewritten as:

‖Y −DX‖2F = ‖Y −
K∑
j=1

djxT
j‖2F = ‖(Y −

∑
j 6=k

djxT
j)− dkxT k‖2F = ‖Ek − dkxT k‖2F (19)

where xT
k is the kth row in X, or else the coefficients corresponding to the dk column of the dictionary

D. Consequently, the matrix Ek expresses the total error when the kth vector is removed. If I restrict this

matrix to represent only data points that actually use dk, defined as ωk = {i|1 ≤ i ≤ N, xkT (i) 6= 0} and

name this new matrix ER
k , I receive the equivalent objective function:

‖ER
k − dkxRk‖2F (20)

As a final step of the algorithm, the Singular Value Decomposition (SVD) can now be applied to ER
k , de-

composing it to ER
k =U∆V T . The new column that updates the dictionary, denoted by d′k will be the first

column of U and the new coefficient vector xkR will be the the first column of V multiplied by ∆(1,1).

The algorithm repeats the whole process, as previously described, until a stopping rule is met. In this

paper, K-SVD is restricted to perform a certain number of iterations which is given as a parameter to the

algorithm. I present an overview of the algorithm from (Aharon et al., 2006, p. 4317) below.

25



Algorithm 3 K-SVD Algorithm

1: Initialization: Set the dictionary matrix D(0) ∈ Rn×K with Frobenius normalized columns. Set J=1.
2: while Stopping rule not met do
3: Sparse Coding Stage: Use OMP to compute the representation vectors xi for each example yi, by

approximating the solution of minxi ‖yi −Dxi‖
2
F subject to ‖xi‖0 ≤ T0.

4: Dictionary Update Stage: For each column k=1,2,...,K update it by:
-Define the group of examples that use this atom, ωk = {i|1 ≤ i ≤ N, xkT (i) 6= 0}.
-Compute the overall representation error matrix Ek, where Ek = Y −

∑
j 6=k

djxT
j .

-Restrict Ek by choosing only the columns corresponding to ωk and obtain Ek
R.

-Apply SVD decomposition Ek
R=U∆V T . Choose the updated dictionary column d′k to be the first

column of U. Update the coefficient vector xR
k to be the first column of V multiplied by ∆(1,1).

5: Set J=J+1.

5.2.6 K-SVD vs PCA

Principal Components Analysis (PCA) is a widely used unsupervised method of finding low-dimensional

representations of data, a process that is called dimensionality reduction. Suppose X is the original n ×N

data set, where n is the number of dimensions and N is the number of observations. The objective is to

find another n×N matrix Y, linearly related to X with respect to a basis P, in order to represent the data

set. The rows of P, {p1, p2, ..., pn} are called principal components and PCA assumes that directions with

the largest variance in the data are the most important in order to express the information that is hidden

in the data. Thus, PCA searches the directions along which variance is maximized and saves these ordered

vectors in P. The process is repeated until n vectors are found. Principal components are restricted to be

orthogonal. In mathematical notation the problem translates to:

minY,P ‖Y − PX‖2F

subject to PTP = I

(21)

A main reason why PCA is extensively applicable is that the orthogonality constraint allows linear algebraic

decompositions to easily solve it. However, there are two important limitations associated with PCA, regard-

ing its use in the context of this research. Firstly, principal components are restricted to be a linear function

of the input data. Secondly, the number of principal components cannot be greater than the dimensionality

of the data.

These limitations do not apply in K-SVD. Since l1-minimization is involved, the sparse representations

are certainly a non-linear function of the input data. In addition, the dictionary consists of more column

vectors than the dimensionality of the data. This is a crucial assumption in order for sparsity to be achieved,

26



along with high accuracy in reconstruction. Since only a small number of the dictionary’s columns are

actually used, representations become of higher level, in terms of the many possible different patterns that

might be hidden in the data. The more columns a dictionary has, the more choices OMP has to pick the

best ones, in order to create a sparse representation with the minimum possible reconstruction error.

In the following sections, two similar classifiers will be presented, which only differ in the nature of the

dictionary they use. Figure 8 shows a block diagram of the Sparse Representation-based classifier, whose

two versions are presented in the following subsections.

27



Figure 8: Sparse Representation-based Classification Algorithm

28



5.2.7 Sparse Representation-based Classification Algorithm using K-SVD

The first step of this method is to train a dictionary for each class (’non-presence’, ’presence’) using the

K-SVD algorithm. The two data sets representing the two classes (empty.csv, m-1.csv) are used separately

in this method. They are split into a 70% training set and a 30% test set. A dictionary is trained on each

training set by the K-SVD algorithm. Then, for every input test data set the Orthogonal Matching Pursuit

algorithm is employed to solve the l1-minimization problem (1), each time using a different dictionary, ob-

tained by K-SVD. Each one of the two resulting sparse representations are used to reconstruct the initial

data set. The reconstruction error ‖Y −DX‖2F is calculated for each of the two cases and the test data set

is classified based on the minimum of the two reconstruction errors.

Algorithm 4 below summarizes the complete procedure.

Algorithm 4 Sparse Representation-based Classification with K-SVD

1: train Dictionary0 using K-SVD on ’non-presence’ training data set
2: train Dictionary1 using K-SVD on ’presence’ training data set
3: SparseMatrix0=OMP (Dictionary0, testdata) . l1-minimization problem
4: SparseMatrix1=OMP (Dictionary1, testdata) . l1-minimization problem

5: if ‖testdata − Dictionary0 ∗ SparseMatrix0‖2F < ‖testdata − Dictionary1 ∗ SparseMatrix1‖2F then
return 0 . ’non-presence’

6: else
7: return 1 . ’presence’

5.2.8 Sparse Representation-based Classification Algorithm using the Training Sets as Dic-

tionaries

The second algorithm proposed in this section differs from Algorithm 1 only in the nature of the dictionaries.

This time I do not apply K-SVD to train dictionaries and the training sets from the two classes are directly

fed into the Orthogonal Matching Pursuit algorithm, playing the role of dictionaries. Since any input data

set will share similar features with the training set-dictionary coming from the same class, I expect that this

method will manage to provide a sufficient discrimination criterion. The sparse matrix generated by the

dictionary from the same class is expected to have less and smaller non-zero coefficients, thus leading to a

successful classification method. An overview of Algorithm 5 is presented below.

29



Algorithm 5 Sparse Representation-based Classification with Training Sets as Dictionaries

1: Consider the ’non-presence’ training data set as Dictionary0
2: Consider the ’presence’ training data set as Dictionary1
3: SparseMatrix0=OMP (Dictionary0, testdata) . l1-minimization problem
4: SparseMatrix1=OMP (Dictionary1, testdata) . l1-minimization problem

5: if ‖testdata − Dictionary0 ∗ SparseMatrix0‖2F < ‖testdata − Dictionary1 ∗ SparseMatrix1‖2F then
return 0 . ’non-presence’

6: else
7: return 1 . ’presence’

The algorithms in this section were developed in Matlab with the use of the KSVD Matlab Toolbox from

Aharon et al. (2006).

A visualization of the intuition behind the Sparse Representation-based classifier is provided in the following

two figures.

Figure 9: Original RSS data and a sparse representation of it

Figure 9 depicts a randomly chosen subset of an original RSS data set (Y) and a sparse representation of it (X)

with respect to a dictionary (D). Without any significant loss, the important information that is hidden in Y

is gathered in the six non-zero elements of X, together with their position in the matrix. This statement can

be justified by Figure 10 that shows the result of the Sparse Representation-based Classification Algorithm

(Algorithm 5) which was applied to the original data set of Figure 9 with respect to two different dictionaries

(training sets).

30



Figure 10: Reconstructed data sets

The data set on the left of Figure 10 is the reconstructed data set, based on the training set from its own class,

while the one on the right is the reconstructed data set, based on the training set from the other class. It can

be observed that the values of both data sets are close to the original ones. However, if someone compares

each cell separately, they will realize that the values in the left data set are usually more close to the values

of the original one. Two examples are shown in the red and blue cells. As a result, the representation error

that is calculated by the algorithms can reveal the class a data set belongs to.

5.2.9 Sparse Representation-based Classification vs k-Nearest Neighbor

Both Sparse Representation-based Classification algorithms can be considered as a generalization of the

Nearest Neighbor (NN) classification method. NN is the simplest version of k-NN, a non-parametric algo-

rithm that does not require any learning process as part of the training phase. It uses the entire training

set to make its decisions, which consists of a set of vectors and a class label corresponding to each one of

these vectors. k-NN can tackle both binary and multi-class classification tasks. The choice of k corresponds

to the number of the closest neighbors, based on some distance metric that will affect the decision of the

classifier. For binary classification, k usually is an odd number. The algorithm finds the k closest to a test

point x training points and performs a majority voting in order to assign the most popular class label to x.

Consequently, each training point votes for their class and the class with the most votes is assigned to x.

The case where k=1 is referred to as nearest neighbor classification.

NN decides on the class label of a test point based on a single training point. The Sparse Representation-based

Classification algorithm takes into account all possible dictionary columns and tries to find the minimum

number of training samples that can represent a test sample so that this representation can be considered

sparse. Similarly to k-NN, the choice of the feature space does not have any effect on the classifier. The

two critical factors are the dimension of the feature space, which has to be significantly large and the proper

calculation of the sparse representation. A serious disadvantage of k-NN is that it suffers from the curse of

31



dimensionality. The volume of the input space increases exponentially as the number of dimensions increases

and k-NN would struggle in that case.

32



6 Results

The methods presented in Section 5 are applied to the data sets (Section 4) under various experimental

settings and the results are reported for each one of the methods in the following subsections respectively.

The most valuable conclusions are discussed with respect to the research objective. Thus, I evaluate the

predictive power of the algorithms and how it is affected by the different number of nodes that are employed

in an area of interest. Secondly, an estimation is made regarding how quickly each algorithm accurately

predicts the outcome of the classification task. This estimation relies on three different factors which are the

number of measurements that are sufficient for a correct prediction, the computational time of the training

phase and the computational time the algorithm takes to predict the class (after the completion of the

training phase). These factors are discussed in each of the following subsections.

6.1 Classification on the Raw Data Sets

The methodology is applied to the initial RTI data set, which contains the RSS vectors for all 28 nodes, as

well as three smaller RTI data sets which represent the cases where 10, 5 and 2 nodes, randomly chosen, are

employed respectively and also to the Crownstone data set. The results of each implementation are shown

and discussed below. It should be mentioned that only the values of M for which the highest accuracy was

achieved are reported.

Number of Nodes Accuracy (30% test set) M (30% test set) % Accuracy (210 obs. test set) M (210 obs. test set) Training Time (sec) Number of Observations Data Set

28 100 1-6, 8-12 1.0000 all 13.4289 5766 RTI

10 96.49 3, 4 0.9333 1, 2 1.2959 2088 RTI

5 91.26 3 0.9095 1-4 0.2903 1028 RTI

2 80.95 2 0.8285 2 0.0343 417 RTI

5 86.10 1 0.8571 2, 4, 5 0.2992 8487 Crownstone

The slight variation in accuracy is due to the change of the percentages in which the data set is split into

training and test set. The results show that even when only 210 observations used as a test set, the classifier

proved to be good enough in prediction. This small number of samples is specifically chosen, as it only

takes approximately three seconds for them to be collected. Consequently, it makes the application realistic

because it can identify the change of the state from ’non-presence’ to ’presence’ and vice versa. It should be

noted that since each single RSS vector has its own label and 70-80 such vectors are collected per second,

accuracy levels of 80% are sufficient to correctly predict whether someone is present or not. The training

phase in each of the experiments does not take more than 13.4289 seconds (28 nodes case). The algorithm

33



predicts the outcome in less than a second.

One might observe that, in comparison with the results of the RTI data set when the same number of

nodes (five) is used, accuracy in the Crownstone Data Set is around 5% lower. A possible explanation lies

to the fact that the Crownstone data contain many RSS vectors whose values are reported within a range

of some seconds and not in the exact same second. In other words, I could consider this data set as being

more noisy compared to the first one. Finally, it can be concluded that the classification task of presence

detection is successful even in the case when only two nodes are deployed in an area of interest.

6.2 Sparse Representation-based Classification Algorithm using K-SVD

In this application, data sets of different dimensions are used as input. In more details, from the initial data

set, new ones are created by only keeping RSS values from randomly selected subsets of nodes, as discussed

in the beginning of Section 5. In addition, different values for the K parameter are tested, in order to obtain

an estimate of the size of a strong dictionary. The term strong implies that the algorithm can provide correct

predictions in high accuracy, with respect to the dictionary. Also, the fewer measurements the algorithm

needs to correctly predict the class, the stronger the dictionary. Thus, an evaluation data set is used and

every time the algorithm predicts the right class, the size of the evaluation set is reduced and the same action

is repeated. This procedure shows the minimum size of a data set for which the algorithm can correctly

predict the class it comes from. The following table summarizes the important parameters and the results

of the experiments. K0 and K1 represent the K parameters for dictionaries D0 and D1 respectively, D0 time

and D1 time correspond to the time the algorithm takes to train the dictionaries, expressed in minutes and

#Iter is the number of iterations of K-SVD at each training procedure.

34



Number of Nodes K0 D0 time K1 D1 time #Iter Classification Outcome Data Set

28 300 5 300 5 80 FAILURE RTI

28 1000 10 1000 10 40 SUCCESS RTI

15 700 5 700 5 40 SUCCESS RTI

10 400 1 400 1 40 FAILURE RTI

10 900 6 500 1 40 FAILURE RTI

10 900 15 500 4 80 FAILURE RTI

5 550 3 250 1 40 FAILURE RTI

5 1000 10 1000 10 40 FAILURE Crownstone

5 2000 65 2000 67 40 FAILURE Crownstone

5 3500 420 2000 67 40 FAILURE Crownstone

The classification outcome is considered successful when test sets from both classes can be assigned the

true label. In any other case, an experiment fails. As it can be seen in the table, the algorithm proves

to be an accurate classifier when the RTI data set includes information gathered by at least 15 nodes. In

these cases, the right class is predicted for both test sets and for every possible size of them, even when only

one RSS vector is used as input. The experiments on the Crownstone data are unsuccessful. Although the

size of the dictionaries is close to their upper bound (based on K-SVD’s constraint for which it holds that

K < N), classification cannot be performed correctly, most likely because a data set with only five attributes

requires larger dictionaries to be trained with respect to the training sets. However, this process is quite

expensive in terms of computational time. It should be noted that, once the dictionaries are trained, the

algorithm needs less than a second to deliver its output. What appears to be an important conclusion is

that the classification process seems to be highly dependent on the size of the dictionaries. The truth of this

statement is explored further in the next Sparse Representation-based Classification application, in which

there are not any constraints on how large a dictionary can be, as in K-SVD.

6.3 Sparse Representation-based Classification Algorithm using the Training

Sets as Dictionaries

The sequence of the experiments in this section and the choice of the parameters, as shown in the table

below, follow the same intuition as in the K-SVD-based Sparse Representation classifier. The reader should

recall that the difference of this algorithm from the K-SVD-based one is that there is no dictionary training

35



phase. The training sets represent the dictionaries and therefore they are directly fed into the Orthogonal

Matching Pursuit Algorithm.

Number of Nodes #Samples of Dictionary0 #Samples of Dictionary1 Classification Outcome Data Set

28 2650 1387 SUCCESS RTI

28 1000 1000 SUCCESS RTI

20 1880 1000 SUCCESS RTI

20 1000 1000 SUCCESS RTI

15 1500 800 SUCCESS RTI

10 961 572 FAILURE RTI

10 2000 1000 SUCCESS RTI

5 5659 2629 SUCCESS Crownstone

5 4000 1900 FAILURE Crownstone

2 1607 700 FAILURE Crownstone

As far as the RTI data set is concerned, the classification task of presence detection is successful with

as few as 10 nodes. About the Crownstone data set, which includes a lot more samples than the RTI data

set of the same dimensions (number of nodes), I manage to obtain strong dictionaries and this leads to

accurate classification performance.

In some of the successful experiments, the algorithm sometimes misclassifies test sets that contain a very

small number of RSS vectors (17 or less). However, because of the high data collection rate, this can be

considered as a slight malfunction of the algorithm that cannot appear in practice. In only one second, a lot

more samples can be collected, so it is an extreme case that should be tested in the context of the current

research, but it certainly cannot affect the algorithm’s overall successful performance. The algorithm delivers

its output in less than a second and the performance of the classifier is highly dependent on the size of the

training sets.

6.4 Results Comparison

Two main methods are compared in this research, which are the Random Forests and the Sparse Representation-

based classifier. In the second method, two algorithms are developed, which only differ in the source the

dictionaries come from. Algorithm 4 trains the dictionaries using K-SVD and Algorithm 5 uses the training

36



sets as dictionaries.

Due to the different nature of the two main methods, there is not a straightforward way to compare their

performance in classification. Random Forests work on data sets in which each RSS vector represents a

different sample. The input of the Sparse Representation-based classifier is a data set for which a prediction

must be made. Thus, in this case a data set can be considered as one sample. If I consider the accuracy

of Random Forests as a majority vote for a class label, then there is a common performance measure. In

that case, Random Forests always predict the right class label, while the Sparse Representation-based clas-

sifier does not. However, once strong dictionaries are found, the Sparse Representation-based classifier can

be directly compared with Random Forests, as both give 100% correct predictions. In the context of the

current research, it is crucial that a classification algorithm can perform exceptionally in the classification

task. In smart home applications, where devices should respond to our presence, there is no room for a

false prediction. If for example, crownstones are responsible for cutting off the power usage so that kitchen

appliances do not work when someone is not there, then it would be dangerous if the system fails to achieve it.

Regarding the minimum number of nodes that need to be deployed in an area of interest in order for

an algorithm to correctly predict the state of ’non-presence’ or ’presence’, Random Forests outperform the

two Sparse Representation-based algorithms. Two nodes are sufficient for the Random Forest mechanism to

detect presence in an area of interest. The Sparse Representation-based classifier is successful with five or

more nodes, in the case where the training sets are used as dictionaries. The K-SVD-based classifier does

not succeed with fewer than 15 nodes. The fewer number of nodes installed the more realistic and affordable

a smart home concept would become.

Regarding how quickly a method predicts the classification outcome, all methods can deliver the predicted

class label in less than a second. They correctly predict the label of a data set of any possible size. It should

be noted that it takes only milliseconds for a data set with a few RSS vectors to be collected. An impor-

tant difference is in the training phase. The Sparse Representation-based classifier that uses K-SVD shows

by far the worst performance. In our experiments, the training of a dictionary varies between one minute

and seven hours. Random Forests need no more than 13.4289 seconds for the training phase at the worst

case scenario. Finally, when the training sets are used as dictionaries in the Sparse Representation-based

classifier, no training phase is associated with this mechanism. Negligible computational time is necessary

in real applications when someone enters or exits an area where a wireless sensor network is deployed, since

the system can respond to this change immediately and subsequently perform any kind of actions.

37



7 Conclusion

This paper uses machine learning and signal processing methods to achieve passive presence detection. This

is to detect whether someone is present or not in an area of interest. The methods process RSS data gathered

by Bluetooth Low Energy nodes placed inside the area. The Random Forest ensemble classifier is used as

the first method, which adopts random features to grow a forest of classification trees in order to predict the

class label. The second method is a custom classification algorithm which exploits the theory of compressed

sensing by generating sparse representations of the input data. Experimental results show that the task of

passive presence detection is feasible, as the change of the state from presence to non-presence and vice versa

can be detected in milliseconds even when only two Bluetooth Low Energy nodes are used and no knowledge

about the position of the sensors exists. The outcome of this research allows for applications in a smart home

environment. Indicatively, it offers advanced safety when someone forgets to switch off a kitchen appliance

before they leave or it can act as a low-cost intrusion detection system.

Future research could possibly involve not only detecting presence but also finding approximations of the

number of people that are present in an area of interest. For instance, in a hospital certain rooms are meant

for physicians to do administrative work while others are meant for physicians to treat their clients. Physi-

cians might use those latter rooms to do administrative work for their own convenience. Knowledge about

the presence of a single physician versus the presence of multiple people would give a hospital the ability to

optimally manage the availability of the rooms by gently advising the physician to move to the appropriate

room and thus increasing the rate of patients who receive treatment per hour.

Further investigation for the applicability of a passive presence detection system is also required in cases

where there are limitations regarding placing of the infrastructure. In a formal care housing it is important

to know where people with dementia for example, are in a building. In such cases, vertical localization is

necessary. If a person is on a different floor than the one they should be, then it takes more time for a

caretaker to find them. The challenge in this case is for the system to obtain the required vertical resolution.

38



8 References

Youssef, M., Mah, M., & Agrawala, A. (2007). Challenges: Device-free Passive Localization for Wireless

Environments. Proceedings of the 13th Annual ACM International Conference on Mobile Computing and

Networking - MobiCom ’07, 222-229, 2007.

Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dic-

tionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006.

Eldar, Y. C., & Kutyniok, G. (2012). Compressed Sensing: Theory and Applications.

Wilson, J., & Patwari, N. (2008). Radio Tomographic Imaging with Wireless Networks, 9(5), 621–632.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry & Y. Ma, ”Robust Face Recognition via Sparse Repre-

sentation,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227,

Feb. 2009.

D. S. Wang, X. S. Guo & Y. X. Zou, ”Accurate and robust device-free localization approach via sparse

representation in presence of noise and outliers,” 2016 IEEE International Conference on Digital Signal

Processing (DSP), Beijing, 2016, pp. 199-203.

Kanso, M. A. (2009). Compressed RF Tomography : Centralized and Decentralized Approaches, (Octo-

ber).

Elad, M. (2010). Sparse and Redundant Representations: From Theory to Applications in Signal and Image

Processing (1st ed.). Springer Publishing Company, Incorporated.

Tan, P., Steinbach, M., & Kumar, V. (2014). Introduction to data mining (Pearson New International

edition. First edition. ed., Pearson custom library). Essex: Pearson.

39



A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18–22.

C. E. Shannon, ”Communication in the Presence of Noise”, Proc. Institute of Radio Engineers, vol. 37, no.

1, 1949, pp. 10-21.

40


