
Delft Institute of Applied Mathematics (DIAM)

Nonlinear System Identification and
Control for Autonomous Robots

Laurens Bliek

M
as

te
ro

fS
cie

nc
e

Th
es

is

Nonlinear System Identification and
Control for Autonomous Robots

Master of Science Thesis

For the degree of Master of Science in Applied Mathematics at Delft
University of Technology

Laurens Bliek

November 7, 2013

Faculty of Electrical Engineering, Mathematics, and Computer Science (EEMCS) · Delft
University of Technology

The work in this thesis was supported by Almende B.V. Their cooperation is hereby gratefully
acknowledged.

Copyright c© Delft Institute of Applied Mathematics (DIAM)
All rights reserved.

Delft University of Technology
Department of

Delft Institute of Applied Mathematics (DIAM)

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics, and Computer Science (EEMCS) for acceptance

a thesis entitled
Nonlinear System Identification and Control for Autonomous Robots

by
Laurens Bliek

in partial fulfillment of the requirements for the degree of
Master of Science Applied Mathematics

Dated: November 7, 2013

Chair:
Dr. J.W. van der Woude

Supervisor at university:
Dr. ing. D. Jeltsema, M.Sc.

Supervisor at company:
Ir. A.C. van Rossum

External expert:
Prof. dr. ir. M. Verhaegen

Abstract

Most robots receive information about their own dynamics or about their environment before
starting to work on their tasks. This makes them less fit for operating in unknown environ-
ments without human supervision. In this thesis, the goal is to let a robot learn the relation
between its actions and perceptions autonomously. This problem is divided in a prediction
part, and a control part. The goal of the prediction process is to correctly predict the sensor
data of the future, given the past sensor and actuator data. The goal of the controller is to
provide exploratory behaviour, so that different situations can be learned by the predictor.
Of the discussed techniques, one predictor and one controller are chosen to be used in an
experiment: a mobile robot equipped with a camera that has to learn what happens when
rotating inside a box with pictures. The chosen predictor is a new type of local linear model,
the Shuffled Linear Model (SLM). In this model, the localities are chosen randomly and linear
regression is used to determine the linear model parameters. It is proved that this model is a
universal approximator, and an upper bound on the number of models is given. The chosen
controller makes use of intrinsic rewards to aid the predictor by providing data that is both
new and easy to predict.

Master of Science Thesis Laurens Bliek

ii

Laurens Bliek Master of Science Thesis

Table of Contents

Preface xi

Acknowledgements xiii

1 Introduction 1
1-1 Research questions . 3
1-2 Type of agents considered . 4
1-3 Outline of this thesis . 5

2 Problem description 7
2-1 Theory . 7
2-2 Practice . 8

3 System Identification 9
3-1 Prediction error method . 10
3-2 Choosing the regression vector . 11

3-2-1 Input-output models . 12
3-2-2 State-space models . 13
3-2-3 Input-output versus state-space models 16

3-3 Choosing the predictor function . 17
3-3-1 Ridge construction . 18
3-3-2 Radial construction . 20
3-3-3 Tensor products . 21

3-4 Finding the optimal parameters . 22
3-4-1 Nonlinear least squares . 23
3-4-2 Problems with recursion . 25
3-4-3 Linear least squares . 26

3-5 Regularisation . 28

Master of Science Thesis Laurens Bliek

iv Table of Contents

4 Shuffled Linear Model 31
4-1 Introduction . 31
4-2 ELM summary . 33
4-3 Proposed model . 34
4-4 Universal approximation with SLM . 34

4-4-1 Necessary lemmas . 35
4-4-2 Improvement of SLM as an extension of ELM 37
4-4-3 Proposed algorithm . 38

4-5 Interpretation of the model . 39
4-5-1 ELM interpretation . 39
4-5-2 RBF interpretation . 40
4-5-3 Fuzzy interpretation . 41
4-5-4 LLM interpretation . 41

4-6 Further research . 43

5 Control for System Identification 45
5-1 Intrinsic motivation . 45
5-2 Exploration versus exploitation trade-off . 46
5-3 Methods using intrinsic motivation . 46

5-3-1 Random movement . 46
5-3-2 Minimise prediction error . 47
5-3-3 Maximise prediction error . 48
5-3-4 Homeokinesis . 48
5-3-5 Maximise learning progress . 49
5-3-6 Intelligent Adaptive Curiosity . 50

5-4 Optimising with future data . 50

6 Experiments 53
6-1 State-space dynamics . 53
6-2 Sensor space dynamics . 54
6-3 Choice of predictor . 55

6-3-1 Choice of regression vector . 55
6-3-2 Choice of predictor function . 56
6-3-3 Choice of parameters . 56

6-4 Choice of control . 60
6-5 Experimental set-up and specifications . 60
6-6 Model specifications . 61
6-7 Testing . 62
6-8 Results . 63

6-8-1 Error and chosen control actions . 63
6-8-2 Change detection . 66
6-8-3 External influence detection . 68
6-8-4 Interpretability . 72

Laurens Bliek Master of Science Thesis

Table of Contents v

7 Conclusion 75

A Link between linear state-space and input-output models 77

B SLM questions 79
B-1 Shuffled Nonlinear Models . 79
B-2 SLM kernel . 80

Bibliography 83

Glossary 87
List of Acronyms . 87
List of Symbols . 88

Master of Science Thesis Laurens Bliek

vi Table of Contents

Laurens Bliek Master of Science Thesis

List of Figures

3-1 Using a predictor to model the system. 10

3-2 Structure of block-oriented models. From top to bottom: a Wiener model, a
Hammerstein model, and a Hammerstein-Wiener model. 15

3-3 Structure of a recurrent neural network. 15
3-4 Structure of a feedforward neural network. 19
3-5 Structure of a radial basis network. 20
3-6 Using gradient descent techniques to find a local minimum of the error. 24

3-7 Using linear regression for parameter estimation. 26

4-1 Proposed SLM algorithm. 39

4-2 Structure of the Shuffled Linear Model. Parameters βk and γk are fixed randomly,
while parameters µk and νk follow from linear regression. 40

4-3 Example of a SLM. At each local point γk (denoted by an asterisk), which are
all chosen randomly, a linear model (line segment) is multiplied with a Gaussian
(curve near the horizontal axis) to approximate the original function locally. The
sum of these local models gives the output of the SLM. 42

6-1 Motivation for the choice of regression vector, and alternatives that were discussed
in this thesis. 57

6-2 Motivation for the choice of predictor function, and alternatives that were discussed
in this thesis. 58

6-3 Motivation for the choice of parameter estimation, and alternatives that were dis-
cussed in this thesis. 59

6-4 Experimental set-up. The robot is equipped with a smartphone and has to learn
the relation between actuator and sensor data by rotating and looking at pictures
inside a box. 61

6-5 Using a fish-eye lens to give the robot a 360◦ view. 61

Master of Science Thesis Laurens Bliek

viii List of Figures

6-6 Results of one run of the three tested control strategies: (a) minimise prediction
error, (b) maximise prediction error, and (c) maximise learning progress. The blue
dots represent the chosen control at timestep t, with the black lines showing the
intervals [−1, 0] and [0, 1]. The red graph shows the logarithm of the prediction
error at timestep t before the learning algorithm included that timestep, while the
green graph shows the logarithm of the prediction error at timestep t using the
learned parameters from the last timestep. 65

6-7 Results of the change detection experiment for: (a) minimise prediction error, (b)
maximise prediction error, and (c) maximise learning progress. The graph shows
the prediction error during the whole experiment, with the red parts of the graph
highlighting those timesteps where the robot looked at a part of the environment
that was different from the first experiment where learning took place. In the
change detection experiment, no learning took place. 67

6-8 Results of the external influence detection experiment for: (a) minimise prediction
error, (b) maximise prediction error, and (c) maximise learning progress. The
graph shows the prediction error during the whole experiment, with the red parts
of the graph highlighting those timesteps where the real movement of the robot
was different from the control values given to the model. In this experiment, no
learning took place. 70

6-9 Results for the same experiment as in the previous figure, except that the robot
was equipped with a fish-eye lens here. 71

6-10 Learned parameters of linear models αk(ϕ) = λ[ϕT 1]T corresponding to three
different situations: (a) stand still (22th local model), (b) rotate left (6th local
model), and (c) rotate right (41st local model). In (d), we zoomed in on the
highlighted part of (c) so that the matrix structure can be seen more clearly.
The parameters are put in a matrix, where each row corresponds to the input
dimension +1 (the bottom row corresponds to the bias, the one above to the one-
dimensional motor space, and all the other rows correspond to one of the 16×16×3
pixels). Each column corresponds to the output dimension, which has dimension
16× 16× 3 = 768. The element of the matrix on position i, j corresponds to the
linear relation between input and output data for input dimension i and output
dimension j. There were ñ of these matrices, one for each linear model. 73

6-11 Learned parameters of λ17, which constitute a linear model for the situation that
the robot rotates left. Here, the robot was equipped with a fish-eye lens. 74

Laurens Bliek Master of Science Thesis

List of Tables

3-1 Properties of the different state-space models in the unified notation. Here, I is
the identity matrix, and the bilinear and RNN models differ by their choice of g. . 16

6-1 Chosen properties of the predictor. 55
6-2 Results of one run of the three tested controllers for one simulation: minimise

prediction error, maximise prediction error, and maximise learning progress. . . . 63

Master of Science Thesis Laurens Bliek

x List of Tables

Laurens Bliek Master of Science Thesis

Preface

This master thesis is the final assignment for my degree of Master of Science in Applied
Mathematics at the faculty of Electrical Engineering, Mathematics and Computer Science at
Delft University of Technology. To get a balance between theoretical research and a practical
assignment, I made the decision to do this project at a research company: Almende B.V.
in Rotterdam. Although Almende’s main focus is the concept of self-organisation in hybrid
actor networks, this project involved a single-agent setting: letting an agent learn the relation
between sensor and actuator data autonomously. The final result is an agent that can learn
from its actions and sensor data to notice changes in the environment and distinguishing its
own actions from external actions.

The thesis committee consists of ir. A.C. van Rossum as my daily supervisor at Almende
B.V., dr. ing. D. Jeltsema, M.Sc. as my supervisor at Delft University of Technology, chair
of the committee dr. J.W. van der Woude and external expert prof. dr. ir. M. Verhaegen.

Master of Science Thesis Laurens Bliek

xii Preface

Laurens Bliek Master of Science Thesis

Acknowledgements

First of all, I would like to thank my daily supervisor Anne van Rossum for his supervision
during this research and for his idea for the research topic. Who knows what this thesis
would be about if it were not for his ideas? I would also like to thank my other colleagues
at Almende for providing such a great and inspiring work environment. Special thanks go
to Dominik Egger for his work on the Romo robot. Most of the experiments in this thesis
were possible mainly because of his work. Special thanks also go to Giovanni Pazienza for
his advice on writing research papers, Remco Tukker for his advice and ideas on this research
and Marc Hulscher for his 3D-printing skills.

Besides Almende B.V. I have had much help from several people at Delft University of Techno-
logy, especially my supervisor Dimitri Jeltsema. His supervision was valuable for my research,
as well as the support of Jacob van der Woude and the advice of Michel Verhaegen, who are
all part of my thesis committee. Of course I am also grateful for the university as a whole
during the part of my study that led to this research.

I would also like to thank all my friends and relatives who supported me during this research
and my whole academic career, both in the Netherlands and abroad. Unfortunately I cannot
mention all of them by name, but I love all of them and appreciate their support. Last but
not least, I would like to thank my loving God for His guidance and protection and for giving
me the talents and opportunities that all led to this research.

Rotterdam Laurens Bliek
November 7, 2013

Master of Science Thesis Laurens Bliek

xiv Acknowledgements

Laurens Bliek Master of Science Thesis

Chapter 1

Introduction

Although our western society has been using machines on a large scale for almost two centuries,
up until now most of them have been completely designed or programmed in advance to
perform a specific task in a specific environment. This is one of the reasons we do not see
many robots walking, riding or flying around in the streets: the real world, and human
society in particular, is so complex that it is impossible to preprogram a robot that can
handle every possible situation in that environment. However, we could benefit a lot from
robots in everyday life, for example in performing dangerous tasks, repetitive tasks, tasks
that require high precision, speed or computational power, or operate in situations that are
unfit for humans. Many of these tasks are already being performed by robots, but only few
of them occur in complex environments, and if they do, it is mostly with human supervision.

To interact with the physical world, any biological or artificial agent (like a robot) needs
both sensors and actuators. If the agent also contains some cognitive processing abilities,
there is potential for artificial intelligence. Although there is no clear definition of artificial
intelligence, one important aspect of it is learning and reasoning about the world’s structures.
This type of knowledge is required to design a system with a desired behaviour, which is the
main focus of control theory. Typically, this knowledge is represented in a mathematical model
by using the physical knowledge scientists have acquired. But sometimes this knowledge is not
available, and constructing a suitable mathematical model for the system becomes a subgoal
in itself. The main area that focuses on constructing such a model is the area of system
identification.

This thesis reverses the priorities of system identification and control in a certain sense.
Usually, the main purpose of system identification is to control a system more accurately. Yet
in this thesis, system identification is seen as the main goal, while control can be used to aid
in this process. Another way to see this, is that the desired task of the agent to be considered
is to identify the relation between actuator and sensor data, which will be called the system
in this thesis. What is interesting about this approach is that this involves more than just
extracting information from a stream of data: since the system is physical, future data will
depend on past data, adding the aspect of time and moving the problem towards the field of

Master of Science Thesis Laurens Bliek

2 Introduction

systems theory. Furthermore, the actuator data can be actively chosen by the agent itself,
which adds a whole new dimension to the problem.

The relation between actuator and sensor data is the most basic structure available to the
agent. Only when these structures are learned, there will be a potential to develop higher
levels of cognition (e.g., emotion, consciousness, logical reasoning) and more complex skills
(e.g., avoiding, using or tracking objects). These are beyond the scope of this thesis.

Laurens Bliek Master of Science Thesis

1-1 Research questions 3

1-1 Research questions

The main goal of this thesis is to answer the following question:

Main research question
How can an autonomous physical agent learn the relation between its

actuator and sensor data?

Although there are many possible routes to the answer of this question, the focus of this
thesis will be within the framework of systems theory. Representing an agent as a system
with inputs, outputs and hidden states opens up a box full of mathematical techniques that
have proofs and descriptions of when they work, how they work, and of how well they work
in terms of robustness, computation time, underlying assumptions, etc. An alternative would
be to stay in the field of machine learning, where learning structures is actually the main
goal. Although many algorithms and results from this field will appear in this thesis, they
will be presented as much as possible within a system-theoretic notation, where objects are
clearly defined and results are rigorously proved. Another alternative would be to take a
Bayesian approach or use information theory. These approaches can have many benefits in
the problem of this thesis, and there are several examples of where these are combined with
systems theory, for example in stochastic control or chaos theory. However, this is beyond
the scope of this thesis.

Using scientific results from various fields, one purpose of this thesis is to combine them in
a system-theoretical framework. Therefore, the following subquestions will also be answered
within this framework:

Subquestions

• How can the relation between actuator and sensor data be represented as a
dynamical system?

• How can the right functions and parameters of such a system be found? Can this
learning process also be described as a dynamical system?

• How can control be used to aid in the learning process?

• How can we test whether an agent has learnt the relation between actuator and
sensor data?

These questions are given more explanation in Chapter 2.

Master of Science Thesis Laurens Bliek

4 Introduction

1-2 Type of agents considered

Although the experiments in this this concern one specific agent, the theoretical results should
apply to agents with the following properties:

1. The agents have sensors and actuators to interact with the physical world, and process-
ing power to handle the data (not necessarily on the agent itself);

2. The agents are autonomous, meaning that they can operate without human supervision;

3. There is a relation between the actuators and the sensors;

4. The underlying dynamics of the agents are not necessarily linear and the agent is not
necessarily holonomic1;

5. The sensor data can be high-dimensional;

6. The agents cannot change anything about the environment, and the environment is
assumed static and deterministic.

The first property binds the agent to the real world, where the laws of physics apply and
specifically causality applies: the past does not depend on the future. Furthermore, the
physical world, unlike some robot simulations for example, does not consist of only polygons
and other ‘nice’ objects. This makes the system more complex, but also contains advantages.
For example, two different locations in the world cannot be exactly equal.

The second property implies that the agent can only use internal information: the sensor and
actuator data, and functions of this data (since the agent has access to processing power).
There are no external signals like a goal or a target signal.

The third property implies that the control will have effect on the sensor data in some way.
Maybe the effect is nonlinear, depends on an internal state or on past data, or the effect is
delayed, but there is an effect.

The fourth property enforces the scope of this thesis to extend to nonlinear systems and
prevents the use of linear models. Most parts of dynamical systems theory focus on linear
systems. Nonholonomic agents pose difficulties in the control of an agent, but since this thesis
does not focus on moving a system to a desired state, these problems are less relevant.

The fifth property gives rise to a new problem: the ‘curse of dimensionality’. Many algorithms
that appear through-out this thesis only work in practice for low-dimensional data, else the
required computation time and number of data samples become too large. Solutions to this
problem within the context of this thesis will be presented. Note that the high-dimensionality
applies to the sensor data, not the actuator data.

Besides the problem of computation time, the high-dimensionality of the sensor data also
causes the problem to differ from classical system-theoretic problems like observability and
state estimation. Whereas observability is related to the problem of finding the hidden states
of a system with only a limited system output, a system with high-dimensional data has the

1In a holonomic agent, the degrees of freedom and the number of actuators are equal.

Laurens Bliek Master of Science Thesis

1-3 Outline of this thesis 5

problem that there is a lot of redundant information in it, making the problem more related
to data mining.

The final property limits the problem to environments that do not change, making it easier
to learn the relation between actuator and sensor data. If an agent performs the same
actions in the exact same situation as before, the next situation will be exactly the same as
before. The agent can move around in the world and observe the world, but it cannot change
anything about it. Section 3-1 does shortly mention a possibility for dealing with non-static
environments, but this will not be further discussed in this thesis. The deterministic part
shifts the focus of this thesis away from probabilistic methods, to further narrow down the
problem.

1-3 Outline of this thesis

This thesis is organised in the following way: in Chapter 2, the problem will be described
and it will be explained how the main theory is divided into two parts, namely identification
and control of the system. The thesis also contains a practical problem which is described in
this chapter. Chapter 3 deals with techniques to describe the system and find its functions
and parameters, when the control is assumed to be known (open-loop system). Chapter 4
contains the main contribution of this thesis: the proposed Shuffled Linear Model (SLM), used
for the system identification part of this thesis. Approximation capabilities for this model are
analysed and proven, and an upper bound on the required number of local models is given.
Chapter 5 focuses on what control techniques to use, assuming the agent has some way to
learn the relation between actuators and sensors. Note that these techniques are different
from most traditional control techniques, where the goal is to move a system towards a
desired state. Instead, the goal of the control in this case is to aid the system identification
techniques as well as possible, without using any external signals, since only autonomous
agents are considered. Chapter 6 contains the details and results of the practical part of this
thesis. The thesis is concluded in Chapter 7, which discusses the main contribution of this
thesis, the main results of the experiments, and suggestions for future work.

Master of Science Thesis Laurens Bliek

6 Introduction

Laurens Bliek Master of Science Thesis

Chapter 2

Problem description

2-1 Theory

The problem in this thesis has a theoretical and a practical aspect. Both are concerned with
the relation between actuator and sensor data. Learning the relation between actuator and
sensor data can be a complex task, because it can usually not be described by a simple linear
function. Dependence on the past makes it natural to represent the relation as a dynamical
system. Unfortunately, concepts like nonlinearity, noise, and high-dimensionality make the
problem too complex to be solved by classical system-theoretic techniques. Therefore, it is
necessary to look at other fields, like machine learning and statistics. Still, the results in this
thesis are represented within the framework of systems theory.

The first part of the problem is to describe the problem mathematically. In the next chapter,
an optimisation problem is formulated, where most symbols are functions or variables in a
dynamical system. This answers the first “subquestion” of the previous chapter.

The next part of the problem is to find those functions and variables that correctly describe the
system. Techniques from the area of system identification are examined, and where needed,
machine learning techniques are examined as well. This is also done in the next chapter.

The use of control in this thesis is different than in most system-theoretic literature. Control-
ling the system is not the goal here, rather control is seen as an aid for the system identification
process. It is possible to look at the closed-loop system, where the control depends directly
on the sensor data. Rather than diving into the theory of closed-loop systems, in this thesis
the control and the system identification process are split, which causes the main theory of
this thesis to be divided into two parts: system identification (Chapter 3), and control for
system identification (Chapter 5).

In the first part, it is assumed that there is some controller that decides what the actuators
should do. This actuator data is known, but is seen as an external signal: only the dependence
from sensor data on actuator data is taken into account. This makes the system an open-loop
system. In the second part of the theory of this thesis, it is assumed that there is a way to

Master of Science Thesis Laurens Bliek

8 Problem description

learn the relation between actuator and sensor data, for a given control. The problem is then
to choose a control that can aid in this learning process.

One reason for splitting the problem in identification and control is the possibility to use
system identification techniques where the actuator data can be seen as an external signal.
And the control techniques do not need to worry about unknown functions or parameters of
the system and can work with an approximation of the real system. This makes sure there
are no restrictions on the way the system is identified or controlled.

A second reason to split the problem is that many biological and mechanical systems are
assumed to have separate systems for the prediction of state or sensor data, and the choice of
motor commands. A major advantage of this is that the effect of the motor command can be
simulated by sending a copy of the command to the predictor or forward model, which helps
solving many problems like coping with delay in the sensorimotor loop, anticipating sensory
effects, distinguishing between self-generated and non-self-generated effects, finding the error
to facilitate motor learning, and simulation and planning [1].

2-2 Practice

The final part of the problem is the implementation of the theory in a real-life application. A
mobile nonholonomic robot with visual sensors and differential drive dynamics communicates
with a computer to send sensory signals and retrieve control signals. Visual sensors have the
advantage that there is a direct effect of the robot’s movement on the sensors, even though
this effect can be very complex in our three-dimensional world. Another advantage is that it
is possible to distinguish between different states of the robot using the visual sensors, since
in general two different locations in the real world are not visually identical, provided the
sensors are accurate enough.

The differential drive dynamics cause the robot to be nonholonomic. The dynamics can
be realised by a state-space description that is nonlinear but affine in the control. These
restrictions might cause linear system identification techniques to fail, but they do provide
structure to the system, besides the structure of the environment: if the agent can really
learn the relation between actuator and sensor data, it should be able to learn this control-
affine relation, even with less actuators than the degrees of freedom (DoF) and with nonlinear
dynamics.

Although in this thesis the dynamics and sensors of the robot are assumed unknown, and
the robot has to find out the available structures by itself, this practical instance is kept in
mind through-out this thesis: learning the relation between actuator and sensor data should
be possible for a robot with differential drive dynamics and visual sensors.

The theories from this thesis are implemented on the computer, not on the robot itself. When
it seems the relation between actuator and sensor data has been learnt, this is tested by means
of some experiment that checks whether the difference between the robot’s own actions and
someone else’s actions can be found. The answer to the last “subquestion” from the previous
question should be answered before performing this experiment.

Laurens Bliek Master of Science Thesis

Chapter 3

System Identification

Finding structure and rules in nature and describing them is one of the main purposes of sci-
ence. For some applications, including most robotic applications, these rules can be described
by a dynamical system. When the input and output data of such a system is known, but
the underlying rules of the system are not known, it becomes important to use techniques
that can find these rules and structures. These techniques can be found in the area of system
identification.
While the motivation for using system identification techniques can vary (typically either
prediction or control of a system), the goal of the techniques themselves remain the same:
construct a model for a dynamical system. For the problem in this thesis, if the relation
between actuator and sensor data can be represented as a dynamical system, using system
identification techniques could give the solution to the problem.
Although the area of system identification started to focus mainly on linear systems, over the
years the attention started to shift to nonlinear systems. On the one hand, nonlinear models
like neural networks [2] have been used to approximate dynamical systems, and can actually
have good approximation capabilities for many dynamical systems [3]. However, analysis of
these models can be hard. Other types of nonlinear models that are more related to linear
systems are for example the bilinear [4] and block-oriented models [5]. Besides these state-
space models, using input-output models is a more common approach to nonlinear system
identification [6]. Although state-space and input-output models are related, they both have
their own advantages and disadvantages.
Besides the type of model used, there have been two main approaches within the area of system
identification to actually use these models: the Subspace Identification Method (SIM) [7] and
the Prediction Error Method (PEM) [8, 9]. While these approaches have their own advantages
and disadvantages, the PEM approach is used in this thesis, mainly because of the large
number of models and techniques that fall under this category. The techniques used in this
thesis should be as general as possible, so that they can be used with as little knowledge
about the actuator and sensor data as possible. This is also termed black-box modelling.
An overview of techniques that can model nonlinear systems without any prior physical
insight can be found in [6]. This is also the main basis for this chapter. An overview of

Master of Science Thesis Laurens Bliek

10 System Identification

several communities and open problems within the general field of system identification is
given in [10].

This chapter is organised as follows: first, the PEM is explained in Section 3-1. In Section 3-2,
a distinction is made between possible choices for the regression vector, since it is not always
necessary or practical to use all data. The topic of Section 3-3 is the predictor function: what
are possible choices for the predictor function, and how can this function be parametrised?
Section 3-4 discusses several methods for finding the optimal parameters of the predictor
function. This chapter is concluded with a section about regularisation in Section 3-5.

3-1 Prediction error method

Suppose we receive input-output pairs (ut, yt) every timestep t = 0, 1, 2, . . ., with actuator
data u∈ Rm and sensor data y∈ Rn . The input u is treated as an external signal, even though
it could be the result of a feedback rule for example. We want to find a system that describes
the relation between actuator and sensor data of an agent, without any prior knowledge. One
way to do this is by trying to predict the corresponding output yt at each timestep t. This can
be done by using the information up to timestep t− 1 to construct a predictor (or estimator,
or observer) ŷt = f(ϕt−1). Here, ϕ ∈ Rl is called the regression vector, which can contain all
input and output data up to timestep t− 1, and f is called the predictor function. Examples
for ϕ and f will appear in the following sections. The assumption in this thesis is that the
past data in ϕt−1 is enough to make an accurate model of the system, as long as t is large
enough.

System

Predictor
f

-

ytϕt−1

εt

ŷtϕt−1

Figure 3-1: Using a predictor to model the sys-
tem.

In general, ŷ will not be a perfect approxima-
tion of y. The closer ŷ is to y, the better the
prediction. At each timestep, we can define the
prediction error ε as εt = yt − ŷt. This gives
the relation yt = f(ϕt−1) + εt. Once the pre-
dictor function f has been chosen, which will be
the topic of the following sections, this answers
the first subquestion of this thesis: How can
the relation between actuator and sensor
data be represented as a dynamical sys-
tem? See figure 3-1 for an overview of the sys-
tem.

Since the prediction error can change at every timestep, it is not a good measure for the
quality of the model. Information about the prediction error over all timesteps is needed to
see if the model is accurate. For this, let the total error E be a function of the prediction error
over all timesteps up to time t: Et =

∑t
i=1 V (εi), for some function V : Rn → R. Examples

are the sum of squares with V (ε) = ||ε||2, or the log-likelihood with V (ε) = − log p(ε) if the
probability distribution p of the prediction error is known1. It is also possible to multiply V
with a weight λ to make recent errors more important: Et =

∑t
i=1 λ

t−iV (εi). This could be
useful for non-static environments, but it will not be considered further in this thesis.

1In this thesis, || · || denotes the Euclidean norm, unless otherwise specified.

Laurens Bliek Master of Science Thesis

3-2 Choosing the regression vector 11

To get an accurate model, the total error E needs to be minimised. In the PEM, this is
done by parametrising the function f and finding the parameters for which the total error is
minimal, since the total error depends on these parameters. Depending on the functions f
and V , different optimisation algorithms exist for this problem. Some examples are: gradient
descent, linear least-squares, and the maximum likelihood method. Section 3-3 and Section 3-
4 discuss some methods to parametrise the function f and to find the optimal parameters,
respectively.

Using the parametrised function f(ϕt−1, θ), the goal of this chapter becomes to solve the
following minimisation problem:

min
θ∈Θ

Et(θ), Et(θ) =
t∑
i=1

V (yi − f(ϕi−1, θ)), (3-1)

where θ is the vector of parameters of the function f , and Θ is some set of possible values for
θ . Let θ∗ be the solution to this problem, then the total system can be denoted as:

yt = f(ϕt−1, θt) + εt,

θt = θt−1 + ∆θ, (3-2)

where ∆θ changes θ in the direction of the optimal parameters θ∗. Once f , θ and ∆θ have
been defined, which will be done in the following sections, the system above is expected to
change parameters θ in such a way that the prediction error decreases. In this thesis, this
is called the learning process. This answers the second part of the subquestion: How can
the right functions and parameters of this system be found? Can this learning
process also be described as a dynamical system?

Finding the right functions and parameters of the system will be the subject of the following
sections. An overview of all the following methods, as well as a motivation for the choice of
methods for the practical problem of this thesis, can be found in Section 6-3.

3-2 Choosing the regression vector

The predictor ŷt = f(ϕt−1) depends on the regression vector ϕ, which consists of past data. In
theory, it is possible to use all past sensor and actuator data to make an accurate prediction.
In this case, ϕt = [yt−1, yt−2, . . . , y0, ut−1, ut−2, . . . , u0]. In practice, however, this is not
always desired: the number of parameters can become very high if there is no bound on how
far back in the past the data will be used, especially for high-dimensional data. Therefore,
the data used in the predictor needs to be restricted.

It is possible to make a distinction between input-output models and state-space models.
Although for some systems it is possible to use both models, there are some major differences
between the models. The most notable difference is the recursive structure of the state-space
model. In the following subsections, first some examples of input-output models will be given,
followed by some examples of state-space models. This section concludes with a comparison
between input-output and state-space models.

Master of Science Thesis Laurens Bliek

12 System Identification

3-2-1 Input-output models

In input-output models, the estimated outputs ŷt depend on input and output data from the
past, within a certain time window [t− q, t], for example:

ŷt = f(ϕt−1) = f(yt−1, . . . yt−q, ut−1, . . . ut−q).

Other examples also use functions of past input and output data, like ŷ or ε, in the regression
vector ϕ. Or they can use only the input data or only the output data. Some examples of
input-output models are given in this subsection, see also [6].

NFIR

In the Nonlinear Finite Impulse-Response model (NFIR), the output data depends on the
input data only, within a finite time interval:

ŷt = f(ut−1, . . . , ut−q),

so the regression vector is ϕ = [uTt−1, . . . , u
T
t−q]T . In the linear case (FIR), this is equal to:

ŷt =
q∑
i=1

Biut−i.

Looking at the practical problem of this thesis, this model could be useful for agents for which
the sensor data is determined solely by some of the past control commands (for example, a
robot that can control its position, not just its velocity or acceleration).

NARX

In the Nonlinear AutoRegressive eXogenous model (NARX), the output data depends on
both input and output data of the past, within a finite time interval:

ŷt = f(yt−1, yt−2, . . . yt−p, ut−1, ut−2, . . . ut−q),

so the regression vector is ϕ = [yTt−1, y
T
t−2, . . . y

T
t−p, u

T
t−1, u

T
t−2, . . . , u

T
t−q]T . In the linear case

(ARX), this is equal to:

ŷt =
p∑
i=1

Aiyt−i +
q∑
i=1

Biut−i

.

Many practical applications cannot be described by the NFIR model, for example if the control
commands of the whole past are necessary to determine the output of an agent. Instead of
using all past control commands, the NARX model could be a good alternative.

Laurens Bliek Master of Science Thesis

3-2 Choosing the regression vector 13

NARMAX

In the Nonlinear AutoRegressive Moving Average model with eXogenous input (NARMAX),
the output data depends on past input and output data, and on the prediction error ε:

ŷt = f(yt−1, yt−2, . . . yt−p, ut−1, ut−2, . . . ut−q, εt−1, εt−2, . . . , εt−r),

so the regression vector is ϕ = [yTt−1, y
T
t−2, . . . y

T
t−p, u

T
t−1, u

T
t−2, . . . u

T
t−q, ε

T
t−1, ε

T
t−2, . . . , ε

T
t−r]T . In

the linear case (ARMAX), this is equal to:

ŷt =
p∑
i=1

Aiyt−i +
q∑
i=1

Biut−i +
r∑
i=1

Ciεt−i

.
Including more information should cause the NARMAX model to be more accurate than
the NARX model. However, because the error ε depends on past model outputs ŷ, not just
past outputs y, this model is recurrent. Though not a state-space model, this recurrent model
shares some of the drawbacks of state-space models due to this recursion, which are mentioned
in Section 3-2-3.

3-2-2 State-space models

When using state-space models, the predicted outputs ŷt do not depend on past inputs and
outputs directly, but on the current state x∈ Rk of a state-space model. The state depends
on the previous input and state. In other words, the state x takes the role of a first-order
NARX model (xt = g(xt−1, ut−1)), while the model output ŷ is a function of the current state
(ŷt = h(xt)) or of the current state and the current input (ŷt = h(xt, ut)). This last case is
not considered in this thesis2.
The state-space models in this thesis assume the following form:

xt+1 = g(xt, ut),
ŷt = h(xt), (3-3)

with state transition function g and output function h. Using the same regressor notation
as earlier in this chapter, this can be written as ŷt = f(ϕt−1), with the regression vector
ϕt−1 = [xTt−1, u

T
t−1]T and state transition xt+1 = g(xt, ut). The predictor function f follows

directly from the state-space model; since ŷt = h(g(xt−1, ut−1)) = f(ϕt−1), the predictor
function f is simply the composition of g and h.
Note that there is a recursion within the regression vector, which is not the case for input-
output models. In the input-output models, the regression vectors follow directly from the
observed input and output data, while in the state-space model the regression vectors are
updated according to the state transition function. This makes state-space models less re-
stricted and can decrease the required number of parameters, but it makes it harder to find
the optimal parameters, as will be explained in Section 3-4.
Throughout this section, the state-space notation will be used. Starting with the linear case,
we consider several systems of this form.

2Letting the model output only depend on the state, not the state and input, makes sure the system is
more similar to the basis function expansion used in Section 3-3.

Master of Science Thesis Laurens Bliek

14 System Identification

LTI system

A linear time-invariant (LTI) system can be written in state-space form as follows:

xt+1 = Axt +But,

ŷt = Cxt. (3-4)

In regressor notation this would be equivalent to ŷt = C[A B]ϕt−1, with ϕt−1 = [xTt−1, u
T
t−1]T .

For LTI systems, there is a direct link between the state-space form and input-output form
(see Appendix A). Identification of LTI systems is thoroughly discussed in [8].

Many dynamical systems can be described by a LTI system. However, LTI systems have
their limitations, and nonlinear systems are becoming increasingly popular. The focus in this
thesis is mainly on nonlinear systems.

Bilinear system

A bilinear system does not only have a linear combination of the state and the control input
but also of the Kronecker product of the state and the control input:

xt+1 = Axt + F (ut ⊗ xt) +But,

yt = Cxt, (3-5)

where the Kronecker product of two vectors a, b is defined as

a⊗ b = [a1b1, . . . , a1bn, a2b1, . . . , a2bn, . . . , anb1, . . . , anbm]T .

In regressor notation this system would be equivalent to

ŷt = f(ϕt−1) = C([A B]ϕt−1 +M(ϕt−1 ⊗ ϕt−1)),

with ϕt−1 = [xTt−1, u
T
t−1]T and M such that M(ϕt−1 ⊗ ϕt−1) = F (ut ⊗ xt). Many sensor

dynamics can be represented by a bilinear system [11]. See [12] for system identification
techniques for bilinear systems.

Block-oriented models

In block-oriented models, the systems are composed of linear dynamic systems (denoted
as rectangles in Figure 3-2) and nonlinear static transformations (denoted as circles). The
motivation for this is that linear dynamical systems are well-understood, and combining them
with nonlinearities can overcome the limitations of LTI systems. Physical insight can be used
in the choice of the block structure.

The system of a Wiener model [13] can be written as:

xt+1 = Axt +But,

yt = h(xt). (3-6)

Laurens Bliek Master of Science Thesis

3-2 Choosing the regression vector 15

In regressor notation this would be equivalent to ŷt = f(ϕt−1) = h([A B]ϕt−1), with ϕt−1 =
[xTt−1, u

T
t−1]T .

The system of a Hammerstein model [14] can be written as:

xt+1 = Axt +Bp(ut),
yt = Cxt. (3-7)

In regressor notation this would be equivalent to ŷt = f(ϕt−1) = C[A B]ϕt−1, with ϕt−1 =
[xTt−1, p(uTt−1)]T .
The system of a Hammerstein-Wiener model [15] can be written as:

xt+1 = Axt +Bp(ut),
yt = h(xt). (3-8)

In regressor notation this would be equivalent to ŷt = f(ϕt−1) = h([A B]ϕt−1), with ϕt−1 =
[xTt−1, p(uTt−1)]T .
A vast number of algorithms for the identification of these block-oriented models is avail-
able [15].

Figure 3-2: Structure of block-oriented models. From top to bottom: a Wiener model, a
Hammerstein model, and a Hammerstein-Wiener model.

Recurrent Neural Network (RNN)

Figure 3-3: Structure of a recurrent neu-
ral network.

Unlike the block-oriented models shown above, a RNN
contains a nonlinear dynamical system, followed by a
static linearity. Where block-oriented models are used
to decompose a complex system in simpler subsystems,
a RNN is still a very complex system that is hard to
analyse. The main advantage of a RNN is different:
theory from neural networks in general and inspiration
from biology can be used to find (efficient) learning algorithms.
Using the block notation from above, a RNN could be represented by the block structure in
Figure 3-3, where an ellipse represents a nonlinear dynamical system and a square a static
linear transformation. The system of a RNN looks as follows:

Master of Science Thesis Laurens Bliek

16 System Identification

xt+1 = g(Axt +But),
yt = Cxt. (3-9)

In regressor notation this would be equivalent to ŷt = f(ϕt−1) = Cg([A B]ϕt−1), with ϕt−1 =
[xTt−1, u

T
t−1]T . Here, g is typically a sigmoid function like g(x) = tanh(x) or g(x) = (1+e−x)−1,

see also Section 3-3-1. Instead of sigmoid functions, one could also use binary functions, radial
basis functions, fuzzy functions or wavelets, but the term Axt +But should then be changed
as well. Some overviews of algorithms for training RNNs can be found in [16, 17].

Unified notation

The above models can be used to simplify or approximate an unknown nonlinear system

xt+1 = g(xt, ut),
ŷt = h(xt). (3-10)

Using the functions g, h and p, one unified notation can be used for all of the above mentioned
state-space models:

ϕt−1 = [xTt−1, p(ut−1)T]T ,
xt+1 = g(xt, p(ut)),

f(ϕt−1) = h
(
g(xt−1, p(ut−1))

)
. (3-11)

Tabel 3-1 shows the models corresponding to different choices for g, h and p.

LTI g, h linear, p = I

Bilinear h linear, p = I

Wiener g linear, p = I

Hammerstein g, h linear
Hammerstein-Wiener g linear
RNN h linear, p = I

Table 3-1: Properties of the different state-space models in the unified notation. Here, I is the
identity matrix, and the bilinear and RNN models differ by their choice of g.

3-2-3 Input-output versus state-space models

Input-output and state-space models are fundamentally different, since one contains a recur-
sion within the regression vector while the other uses only observed data for the regression
vector. Yet for some systems, it is possible to use both models. For example, if the output
function h is invertible (i.e. there is a unique state for each sensor observation and vice versa),
the system

xt+1 = g(xt, ut),
ŷt = h(xt), (3-12)

Laurens Bliek Master of Science Thesis

3-3 Choosing the predictor function 17

can be converted to the first-order NARX model ŷt = f(yt−1, ut−1) by using
ŷt = h(g(h−1(yt−1), ut−1)). Conversely, an input-output model can in some cases also be
realised by a state-space model. If this is the case, the order of the state-space system is lesser
than or equal to the used number of delayed inputs and outputs [18]. In practice, this implies
that input-output models often use more parameters than state-space models, especially for
high-dimensional input or output data, making state-space models more attractive.

In robotic applications, the function g of equation (3-12) could represent the robot dynamics,
while the function h could contain information about the environment. When using physical
knowledge, splitting the predictor function in the functions f and g could give an advantage.
However, in the case of sensors that correspond to direct observations of the environment (for
example cameras or range-finders), the function h that approximates the sensor values for a
given state might be very complex. In these cases, looking at the dynamics in the sensor space
rather than the state space might be more beneficial. This can be done using input-output
models.

The recursion in the state-space models allow for a long ‘memory’: prediction is not done for
just one timestep, but the predicted output depends on the whole past. In input-output mod-
els it is also possible to get recursion. The predicted output can be used as the model input,
giving a feedback loop, instead of using the observed sensor output each timestep. However,
this might lead to instability, and it can be hard to analyse the stability conditions for these
models, while state-space models have clear stability conditions even in the nonlinear case.
When using recursion, whether in state-space or input-output models, system identification
becomes more difficult. This is shown in Section 3-4.

3-3 Choosing the predictor function

Recall the predictor ŷt = f(ϕt−1), with predictor function f : Rl → Rn. In this section the
regression vector ϕ ∈ Rl is supposed to be known, and the time index will be omitted. After
having chosen the regression vector, which is the input of the predictor function, the function
f itself needs to be chosen. Since the relation between input and output data is unknown, f
can be any function going from regressor space to output space. The desired function values
of f are given by the output data y, making the problem in this chapter a supervised learning
problem. There is a large variety of available techniques for this general problem, so only a
few popular techniques are considered in this section.

For the nonlinear case, a common approach is to expand f into several basis functions fk
and take f(ϕ) =

∑ñ
k=1 αkfk(ϕ), with ñ a chosen order of the model and coefficients αk∈ Rn.

Most choices for fk can be seen as a transformation of a mother function κ : Rl → R. This
gives

f(ϕ) =
ñ∑
k=1

αkκ(ϕ, βk, γk). (3-13)

Here, βk corresponds to a dilation and γk to a translation of the regression vector. With these
parameters, each κ transforms the regression vector into a scalar, after which the parameters
αk are used to transform these values to the sensor space Rn in a linear fashion. Many
blackbox modelling techniques use this form [6]. This form can be used for all input-output

Master of Science Thesis Laurens Bliek

18 System Identification

models mentioned in Section 3-2-1, and for the state-space models from Section 3-2-2 for which
the function h is linear3. Putting all parameters αk, βk and γk into one large parameter vector
θ gives ŷt = f(ϕt−1, θ).

In the following subsections, three choices for parametrising κ are considered, namely: ridge
construction, radial construction and tensor products. Within each subsection, some common
choices for κ are discussed.

3-3-1 Ridge construction

In the ridge construction approach, the regression vector is multiplied with a vector βk ∈
Rl and the parameter γk is subtracted, giving κ(ϕ, βk, γk) = κ(βTk ϕ − γk), with γk ∈ R.
Sometimes the subtraction comes before multiplication: κ(ϕ, βk, γk) = κ(βTk (ϕ − γk)), in
which case γk has the same dimension as the regression vector. The function fk is now
constant along a hyperplane {βTk ϕ ≡ const.}. Several popular approximation methods take
this approach, for different choices of κ.

Fourier series

If ϕ is a scalar (l = 1), we can choose κ(x) = cos(x). In this case, the ridge construction
approach is similar to the Fourier series expansion with the scalars βk as the frequencies and
scalars γk as the phases:

f(ϕ) =
ñ∑
k=1

αk cos(βk(ϕ− γk)). (3-14)

Continuous functions can be approximated arbitrarily well by Fourier series, as follows from
the Riesz-Fischer theorem. The larger the value of ñ, the better the approximation. All
techniques that are discussed in this section have this property.

The fourier series are given here as an example, and are not discussed further in this thesis.

Other one-dimensional examples

Some other examples of κ in case ϕ is a scalar, are the unit pulse κ(x) = 1−0.5≤x<0.5 and the
unit step κ(x) = 1x≥0, where

1S(x) =
{

1, x ∈ S,
0, x /∈ S,

for any set S. Smooth versions of these are the Gaussian bell κ(x) = 1√
2πe
−x2/2 and the logistic

function κ(x) = 1
1+e−x . Like the Fourier series example, these one-dimensional examples are

not further discussed, since the regression vector ϕ of the problem in this thesis is in general
not a scalar. However, the functions mentioned here are commonly used in techniques like
neural or radial basis networks, which can handle regression vectors that are not necessarily
scalars. These techniques will be discussed in the following subsections.

3For state-space models, function κ corresponds to function g, while parameters αk correspond to the
columns of the matrix of linear function h. This matrix was usually written as C in Section 3-2-2.

Laurens Bliek Master of Science Thesis

3-3 Choosing the predictor function 19

Sigmoid neural networks

The ridge construction approach is a popular approach used in sigmoid neural networks and
multilayer perceptrons. Sigmoid functions are bounded differentiable functions with a positive
derivative. Besides the logistic function, the hyperbolic tangent is a second popular choice for
the sigmoid in neural networks. Using these neural networks, the predictor function f can be
formulated as:

f(ϕ) =
ñ∑
k=1

αkσ(βTk ϕ− γk), (3-15)

βT1 − α1

βT2 − α2

βTñ − αñ

+

...
...

...

ϕ
γ1

ϕ
γ2

ϕ
γñ

f(ϕ)

Figure 3-4: Structure of a feedforward neural network.

with σ a sigmoid function and κ(x) = σ(x). The parameters βk and αk represent the input
and output synaptic weights to and from hidden neuron k respectively, γk is called the bias,
and ñ corresponds to the number of hidden neurons. The structure of the network is shown in
Figure 3-4. If the real output y depends continuously on the regression vector ϕ, the neural
network 3-15 can approximate this relation up to arbitrary precision as long as ñ is large
enough [19].

Note that this notation can be used both for feedforward and for recurrent neural networks.
The recurrent neural network (see Section 3-2-2) is a type of state-space model, while feed-
forward neural networks can be used for input-output models. For an input-output model,
ϕ consists of past inputs and outputs of the real system but is called the input of the neural
network. The term σ(βTk ϕ − γk) represents the value of hidden neuron k, and f(ϕ) be-
comes the output of the whole feedforward network. There is no recursion, so this network
is called a feedforward model. For a state-space model, ϕ consists of the previous state and
the previous input: ϕt−1 = [xTt−1 u

T
t−1]T . A recurrent neural network has state transition

xt+1 = σ(β
[
xt
ut

]
− γ), where β = [β1, . . . βñ]T and γ = [γ1, . . . γñ]T . This implies that some

of the weights in β are recurrent: they connect xt to xt+1.

Master of Science Thesis Laurens Bliek

20 System Identification

3-3-2 Radial construction

Instead of transforming the regression vector linearly by multiplication by βk and translation
by γk, one can use norms to transform the regression vector into a scalar. One possibility
is taking the (Euclidean) norm of ϕ − γk to get the distance between ϕ and the translation
parameter γk. This value can then be scaled by βk ∈ R to get κ(ϕ, βk, γk) = κ(βk||ϕ− γk||).
The name of this approach comes from the fact that f is now constant along a sphere with
γk as the center: {||ϕ − γk|| ≡ const}. Two techniques that make use of this approach are
discussed below.

Radial basis networks

In radial basis networks, the function κ is usually a Gaussian: κ(x) = e−x
2 . These functions

have the property that they approach zero when the distance between ϕ and γ is large. Using
the scalar βk multiplied by the distance between ϕ and γk, the predictor function f can be
denoted as:

f(ϕ) =
ñ∑
k=1

αke
−βk||ϕ−γk||2 . (3-16)

Here, γk represents the position of the center of the Gaussian, while βk determines the width.
The structure of the radial basis network is shown in Figure 3-5.

Like sigmoid neural networks, radial basis networks can approximate continuous functions up
to arbitrary precision as long as ñ is large enough [20].

− || · || β1 α1

− || · || β2 α2

− || · || βñ αñ

+

...
...

...

ϕ
γ1

ϕ
γ2

ϕ
γñ

f(ϕ)

Figure 3-5: Structure of a radial basis network.

Local linear model

Radial basis networks can be generalised by using different αk. In the approaches mentioned so
far, αk did not depend directly on the regression vector ϕ. It is, however, possible to see αk as
a function of ϕ. In the previous approaches, this would then be a constant function, but other

Laurens Bliek Master of Science Thesis

3-3 Choosing the predictor function 21

choices are possible. The most common example of this is in Local Linear models (LLMs),
where αk is a linear function of ϕ, for example αk = Akxt−1 + Bkut−1 + Ok for the state-
space case (ϕt−1 = [xTt−1, u

T
t−1]T). For a general regression vector ϕ this can be written as

αk(ϕ) = µkϕ+ νk. Using this in combination with the radial basis network gives:

f(ϕ) =
ñ∑
k=1

κ(βk||ϕ− γk||)(µkϕ+ νk), (3-17)

with a standard choice of κ(x) = e−x
2 . See [12] for an analysis and learning algorithms for

local linear models.

One major advantage of the local linear model is its interpretability. Neural and radial
basis networks do not have a clear interpretation when modelling a certain system, while
the local linear model is just a weighted sum of linear models, and linear models are quite
well understood. This implies that, when the optimal parameters αk, βk, γk have been found,
these will also give some insight into the model.

Besides this, the LLM is also expected to have better approximation capabilities than, for
example, a radial basis network. This is due to the higher number of free parameters: αk of
the previous models is an n×1 vector, as is νk, but µk is an n× l-sized matrix. The downside
of this is usually a higher computational cost for determining the optimal parameters. All of
this is discussed in Chapter 4.

3-3-3 Tensor products

A third method to transform the input ϕ into a scalar, is by using the product of sev-
eral functions of the input. Denote the regression vector as ϕ = [ϕ1, . . . , ϕl]T , with l the
dimension of the regression vector. Then, instead of using a function of a linear combi-
nation of the regressors (ridge construction) or a function of the distance between the re-
gression vector and γk (radial construction), l functions of the regressors are multiplied:
κ(ϕ, βk, γk) =

∏l
j=1 κj(βj,k(ϕj − γj,k)). This gives the following equation for the predictor

function:

f(ϕ) =
ñ∑
k=1

l∏
j=1

κj
(
βj,k(ϕj − γj,k)

)
. (3-18)

Fuzzy networks

In fuzzy logic and fuzzy set theory, mathematical statements like s ∈ S can take a value
between 0 and 1 rather than being true (1) or false (0). This branch of mathematics has
also been applied to system identification [21]. One advantage of this approach is that vague
linguistic statements like ‘the speed is high’ can be converted to a real value. This allows for
so-called fuzzy reasoning, for example: ‘if x is large, then y is small’. These statements can
then have precise mathematical meanings using fuzzy logic.

A fuzzy set is defined as a function A : U → [0, 1], where U is any finite or infinite set. A
statement like ‘x is large’ can then have a truth value of A(x) ∈ [0, 1] for x ∈ U . The function
A contains all information about how large each x ∈ U is. In the following, a statement

Master of Science Thesis Laurens Bliek

22 System Identification

will be denoted as A(x). Using these continuous truth values, fuzzy logic extends the logical
operators to continuous values.

One way to define the fuzzy logical and operator, is by using multiplication: A(x) ∧B(y) =
A(x) · B(y). Similarly, we can define fuzzy or and not operators by A(x) ∨ B(y) = A(x) +
B(y)−A(x)B(y) and ¬A(x) = 1−A(x) respectively, although there are several alternatives.
Most fuzzy networks consist of fuzzy rules of the form: if A1(x1) ∧ A2(x2) ∧ . . . ∧ Al(xl)
then B(z). If B(z) is a non-fuzzy statement like z = α, and multiplication is also used for
implication, this rule can be denoted as z = α

∏l
j=1Aj(xj). Having ñ of these rules with the

regression vector as input, and letting each rule be defined by the same function transformed
by dilation βj,k and translation γj,k, a similar notation as in previous sections can be used for
the predictor function f :

f(ϕ) =
ñ∑
k=1

αk

l∏
j=1

A
(
βj,k(ϕj − γj,k)

)
. (3-19)

It has been shown that under some conditions, this approach is equivalent to radial basis
networks [22], which implies good approximation capabilities. Furthermore, this implies that
fuzzy networks can be generalised to local linear models, just as radial basis functions can. A
common type of fuzzy network that is equivalent to a local linear model is the Takagi-Sugeno
fuzzy model [21]. This model is shortly analysed in Chapter 4.

3-4 Finding the optimal parameters

Once the regression vector ϕ has been chosen, as well as the parametrisation of the predictor
function f , the parameters θ need to be fine-tuned so that the predictor ŷ = f(ϕ, θ) correctly
predicts the output y, for several regression vectors ϕ. This can be achieved by minimising
the total error, as described in Section 3-1:

min
θ∈Θ

Et(θ), Et(θ) =
t∑
i=1

V
(
yi − f(ϕi−1, θ)

)
. (3-20)

The most common choice for V is the sum of squares V (ε) = ||ε||2, with || · || the Euclidean
norm. This causes equation (3-20) to become a least-squares problem. This is the approach
that will be used in this section, although the maximum likelihood method, with V (ε) =
− log p(ε), is a popular alternative. These two approaches are equivalent under the assumption
of white Gaussian noise for the prediction errors4.

Let θ∗ be the (locally) optimal solution to equation (3-20). The problem of finding the
optimal parameters θ∗ is called the learning process. As denoted in Section 3-3, the problem

4In the maximum likelihood method, the prediction errors εt = yt− ŷt are assumed to have a certain proba-
bility density function p. The function V is chosen to be V (ε) = − log p(ε). For white Gaussian noise, the errors
εt are assumed to be i.i.d. with variance σ2 and probability density function p(ε) = (2π)−n/2|σ2I|

1
2 e
− 1

2σ2 ||ε||
2
.

Since only the error ε depends on θ, the other terms and constants can be left out in the minimisation of
the total error, giving: minEt(θ) =

∑t

i=1− log(e−||ε||
2
) =

∑t

i=1 ||ε||
2. This is equivalent to using the sum of

squares for V .

Laurens Bliek Master of Science Thesis

3-4 Finding the optimal parameters 23

is a supervised learning problem, since the desired values of f are available after one timestep.
It is also possible to distinguish between offline and online learning. In offline learning (also
called batch learning), the parameters θ∗ for input-output data up to timestep t need to
be found without knowing the parameters θ of previous timesteps. In online learning, the
chosen parameters θ are given for input-output data up until timestep t − 1. Given new
data of timestep t, these parameters then need to be adjusted towards the optimal θ∗. Most
online algorithms have an efficient use of memory and computation time, but they need to
be executed every timestep while an offline algorithm is executed only once.

To summarise, it is assumed that the following is known:

• Current timestep t.

• The regression vector ϕt−1 as a function of input-output pairs (ui, yi) up to timestep
t− 1.

• The desired output yt.

• A parametrisation of the predictor function f of the form: f(ϕ) =
∑ñ
k=1 αkκ(ϕ, βk, γk),

with κ and ñ known, and parameters (αk, βk, γk) only known in the case of online
learning.

With this information, the goal in this section is to find the following optimal parameters:

θ∗ = arg min
θ∈Θ

t∑
i=1
||yi − f(ϕi−1, θ)||2. (3-21)

A large number of techniques deals with this problem. The names of these techniques may
differ, depending on the chosen regression vector and on the parametrisation of f (and on the
scientific field). However, most techniques can be classified within one of two groups: linear
or nonlinear optimisation techniques. In linear optimisation, the parameters βk and γk are
chosen by some method and stay fixed. After choosing βk and γk, only the parameters αk are
optimised. This reduces the problem above to a linear least squares problem. In nonlinear
optimisation, the most common approach is to perform a gradient descent on the error for all
parameters (αk, βk, γk) to reach a local optimum.

The following subsections deal with methods for finding values of αk, βk, and γk. First, non-
linear least squares techniques are discussed, which give optimal values for these parameters.
Then, the linear least squares problem for fixed βk and γk is presented, giving a method
for finding the optimal values of αk only. This last method only works in combination with
techniques for finding values for βk and γk, so these techniques are presented next. Popular
methods from several scientific fields are discussed.

3-4-1 Nonlinear least squares

Master of Science Thesis Laurens Bliek

24 System Identification

θ

E(θ)
G(θ)

Figure 3-6: Using gradient descent techniques
to find a local minimum of the error.

The minimisation problem of equation (3-21) is a
nonlinear least squares problem, for the techniques
mentioned in this chapter. In general, these prob-
lems do not have an analytical solution, so itera-
tive search techniques are the most common ap-
proach to find a local minimum for the error. In
these approaches, the parameters θ are adapted
each iteration in such a way that the error de-
creases. This can be done by using the gradient
G(θ) = E′(θ)T = ∂E

∂θ (θ)T , which is a vector of
the same dimension as the number of parameters.
Following the gradient can be seen as moving in
parameter space in a ‘downhill’ fashion, for each iteration. This is illustrated in Figure 3-6.
In a local optimum of E, the gradient is zero: G(θ) = 0. This can be solved by Newton’s
method:

G(θ + ∆θ) ≈ G(θ) +G′(θ)∆θ = 0,
=⇒ ∆θ ≈ −G′(θ)−1G(θ). (3-22)

This gives the iterative procedure θi+1 = θi + µ ∆θ with
∆θ = −µ G′(θ)−1G(θ) = −µ E′′(θ)−1E′(θ)T .

Here, µ is a small step size, and the second derivative E′′ is a square matrix of dimension
equal to the number of parameters squared. Since the number of parameters can be quite
large, this term is usually substituted by a term R that is easier to compute, resulting in
different techniques of the form ∆θ = −µ R(θ)−1E(θ)T . Newton’s method then takes this
same form with R = E′′.
Using Equation (3-20), the first and second derivative of E can be computed as follows:

E′(θ) = ∂

∂θ

t∑
i=1
||yi − f(ϕi−1, θ)||2 =

t∑
i=1

2(yi − f(ϕi−1, θ))T
∂

∂θ
f(ϕi−1, θ), (3-23)

E′′(θ) =
t∑
i=1

2 ∂
∂θ
f(ϕi−1, θ)T

∂

∂θ
f(ϕi−1, θ) + 2(yi − f(ϕi−1, θ))T

∂2

∂θ2 f(ϕi−1, θ). (3-24)

To prevent the computation and inversion of this big matrix, several approximations of E′′
can be used. These are discussed in the following techniques.

Gradient descent

Using R = I, with I the identity matrix, no matrix inversion is required. The parameters
literally follow the gradient by the same amount for each iteration. This direction is the
direction in which the error decreases fastest. However, this does not mean that the error
converges in the least number of iterations: usually gradient descent is outperformed by other
methods.
In neural network theory, the popular backpropagation algorithm uses an efficient implemen-
tation of gradient descent.

Laurens Bliek Master of Science Thesis

3-4 Finding the optimal parameters 25

Gauss-Newton

In the Gauss-Newton method, we have R(θ) = H(θ) =
∑t
i=1 f(ϕi−1, θ)T f(ϕi−1, θ), ignoring

the second term of the matrix E′′ from Newton’s method. From Equation (3-24) it can be
seen that this is a good approximation if the error is small. Because H actually approximates
E′′, the Gauss-Newton method usually outperforms the gradient descent approach, at the cost
of more computation time per iteration since this matrix needs to be inverted. Compared to
Newton’s method, one advantage is that H is always positive definite, making sure the error
actually decreases, though convergence cannot be guaranteed.

Levenberg-Marquardt

The Levenberg-Marquardt method could be seen as a mix between Gradient descent and
Gauss-Newton: R(θ) = H(θ) + µI. Larger δ makes the method more similar to gradient
descent, and smaller δ makes it more similar to Gauss-Newton. It can also be seen as a
trust-region approach of the Gauss-Newton method [23], making it more robust at the cost
of more computation time per iteration.

Conjugate gradient method

The conjugate gradient method uses gradients from past iterations together with line opti-
misation to compute a new optimal search direction. Like in the other methods above, an
approximation of E′′ is used, making it more accurate than gradient descent. However, an
advantage compared with the other methods is that no matrix inversion is necessary, just like
in the gradient descent method.

3-4-2 Problems with recursion

In the nonlinear least squares methods mentioned above, the derivative of the error E′(θ) =∑t
i=1 2(yi − f(ϕi−1, θ))T ∂

∂θf(ϕi−1, θ) was used. Since most functions that appeared in Sec-
tion 3-3 are differentiable, and their derivatives are known, this should not be a problem.
However, even for differentiable functions, a problem arises when the regression vector ϕ
contains a recursion: the derivative ∂

∂θf(ϕi−1, θ) then depends on all past data.
This can be seen by looking at the predictor function for the state-space models in unified
notation:

ϕt−1 = [xTt−1, p(ut−1)T]T ,
xt+1 = g(xt, p(ut)),

f(ϕt−1) = h(g(xt−1, p(ut−1))), (3-25)

where the unknown function h depends on α, and g and p depend on both β and γ. Even in
case h is linear and p is the identity function, we have:

∂

∂θ
f(ϕi−1, θ) = α

(∂
∂θ
g(xt−1, ut−1) + ∂

∂xt−1
g(xt−1, ut−1) ∂

∂θ
xt−1

)
,

∂

∂θ
xt−1 = ∂

∂θ
g(xt−2, ut−2) + ∂

∂xt−2
g(xt−2, ut−2) ∂

∂θ
xt−2. (3-26)

Master of Science Thesis Laurens Bliek

26 System Identification

This implies that the gradient has to be calculated for all past timesteps. The NFIR and
NARX models do not suffer from this problem, since the regression vector only depends on the
input and output data for these models, which do not depend on the parameters θ. However,
the NARMAX model does have a similar problem, because the prediction error appears inside
the regression vector, which does depend on the parameters θ.

There exist many solutions to this problem. One of them is considered in the next subsection.

3-4-3 Linear least squares

Instead of optimising over all parameters θ, it turns out that optimising only the parameters
αk is an easier problem. Suppose that the parameters βk and γk are given, for example by
one of the methods that will be presented in the remainder of this chapter. The function f
is then linear in the parameters αk and the error is given by:

Et(α) =
t∑
i=1
||yi − f(ϕi−1, θ)||2

=
t∑
i=1
||yi −

ñ∑
k=1

αkκ(ϕi−1, βk, γk)||2

=
t∑
i=1
||yi − ακ(ϕi−1, β, γ)||2, (3-27)

with α = [α1, . . . , αñ] and κ(ϕ, β, γ) =

 κ(ϕ, β1, γ1)
...

κ(ϕ, βñ, γñ)

. If the values of yi and κ(ϕi−1, β, γ)

are put in columns of desired output matrix Yt and construction matrix Kt respectively, this
can be denoted in matrix notation as

Et(α) = ||Yt − αKt||2F , (3-28)

ακ(ϕi−1, β, γ)

κ(ϕi−1, β, γ)

yi

Figure 3-7: Using linear regression for
parameter estimation.

where || · ||F denotes the Frobenius norm. The iterative
procedures from the previous subsection can be used for
this problem. However, since this is a linear least squares
problem, direct methods exist, circumventing the prob-
lem of calculating the gradient of the error. These linear
regression techniques are illustrated in Figure 3-7.

An efficient direct method to find the parameters α that
minimise this error, involves the use of the Moore-Penrose
pseudo-inverseK†t . The solution α = YtK

†
t is the smallest-

norm solution to equation (3-28) [24]. This implies that
||α||F is minimised as well. Minimising the norm of the
parameters, besides the error, can have positive effects
on the regularisation capabilities of the model (see Section 3-5).

Laurens Bliek Master of Science Thesis

3-4 Finding the optimal parameters 27

There exist online algorithms that can efficiently calculate K†t when K
†
t−1 is known [25]. Some

online algorithms that do not make use of the Moore-Penrose pseudo-inverse, can also take
weighting into account, for example when the prediction errors in the past should not count
as heavily as recent prediction errors:

Et(α) =
t∑
i=1

λt−i||yi − ακ(ϕi−1, β, γ)||2.

Here, λ ∈ (0, 1] is a forgetting factor. The recursive least-squares algorithm is one of the
most popular techniques for this problem. Using this technique with λ = 1 is equivalent to
minimising the error in equation (3-28).
Note that the dimension on the x-axis of Figure 3-7 is equal to ñ. Since it is easier to fit a
linear model with the same number of datapoints in higher dimensions, it is expected that
for larger ñ, a smaller error can be achieved.
Note also that the linear least-squares method gives a global solution to the minimisation
problem minEt(α), with β and γ fixed. This does not mean it is a global solution for θ, so
β and γ have to be chosen carefully. Some possibilities for choosing β and γ are discussed
below.

Random Projection methods

An obvious first attempt for choosing β and γ, is by assigning random values to these pa-
rameters. Especially in applications where no prior physical knowledge is available, as is the
case in this thesis, it is useful to analyse this method. Although simple in its essence, this
approach has gained a lot of popularity recently, especially in the area of neural networks.
The most popular examples are the Extreme Learning Machine (ELM) [26] for feedforward
neural networks, and Reservoir Computing (RC) techniques [17] for recurrent neural net-
works. Although conceptually simple, these techniques tend to perform extremely well in
many applications. Here, the essence of this technique will be described not just for neural
networks but for the prediction error method in general, and the technique will be called
Random Projection Method (RPM) in line with [27, 28].
The Random Projection Method for the Prediction Error Method can be defined as follows:

• Given timestep t, the regression vector ϕt−1 and the predictor function
f(ϕ) =

∑ñ
k=1 αkκ(ϕ, βk, γk), take the parameters β, γ from a continuous probability

distribution and keep them fixed for every timestep t.

• Calculate the construction matrix Kt =

 κ(ϕ1, β1, γ1) . . . κ(ϕt, β1, γ1)
...

...
κ(ϕ1, βñ, γñ) . . . κ(ϕt, βñ, γñ)

.
• Minimise the error Et(α) = ||Yt−αKt||2F for α, with Yt the desired output matrix, using
any linear least squares method.

For sigmoid neural networks and radial basis networks, it has been shown that these networks
can still act as universal approximators when using the method above [29]. Chapter 4 of this
thesis shows similar results for the local linear model.

Master of Science Thesis Laurens Bliek

28 System Identification

Constructive methods

Instead of choosing random values for β and γ, information of the input and output values
can be used if they are available. In radial basis networks, for example, it is common to
choose some of the input samples and use them as the centers of the Gaussian functions.
As an alternative, one could look at the range of possible input values and distribute the
parameters in such a way that the input space is fully covered, creating a lattice. The
input data can also be used to further optimise the parameters with clustering algorithms or
Hebbian learning. Finally, one could try several parameters and see which one works best,
possibly using heuristics like genetic algorithms.

3-5 Regularisation

Recall the total error from Equation (3-20): Et(θ) =
∑t
i=1 V (yi − f(ϕi−1, θ)). A model with

a very small total error is not always a good model. The reason for this is that only the given
input and output data are used for fitting the model, while future or unencountered data is
not taken into account. When a model has a very low error for the given training data but
might have a high error when encountering new data, this is called overfitting. One method
to prevent overfitting is called regularisation.

It turns out that both ñ and the size of the parameters play a key role in overfitting. Since
reducing ñ usually leads to a larger error, a common approach is to focus on minimising the
size of the parameters, besides minimising the total error. This can be done by changing the
objective function to:

min
θ∈Θ

Wt(θ),

Wt(θ) = Et(θ) + δ||θ|| =
t∑
i=1

V (yi − f(ϕi−1, θ)) + δ||θ||2, (3-29)

with δ the regularisation parameter. For the linear least squares method from Section 3-4-
3, where optimisation is done over parameters α while parameters β and γ are fixed, this
corresponds to Tikhonov regularisation or ridge regression:

min
α∈Rn

Wt(α), Wt(α) = ||Yt − αKt||2F + δ||α||2. (3-30)

The method of using the Moore-Penrose pseudo-inverse can be seen as solving the Tikhonov
regularisation with limδ↓0. For the nonlinear least squares methods, the Levenberg-Marquardt
algorithm also uses a regularisation term, while in gradient descent or backpropagation al-
gorithms it is more common to reduce the number of iterations rather than the size of the
parameters.

Besides these regularisation methods, it is common to prevent overfitting by choosing the
data carefully. For example, one could use only a selected subset of the data to fit the model,
which is very common in the area of machine learning. Here, the data that is used for fitting
the model is usually called the training set, while the rest of the data is called the validation

Laurens Bliek Master of Science Thesis

3-5 Regularisation 29

set. In this thesis, a different approach is used: the control has a large effect on the data that
will be encountered. Choosing the control in such a way that the data is representative for all
the data that the model might encounter in the future, could result in a better model. This
is the topic of Chapter 5.

Master of Science Thesis Laurens Bliek

30 System Identification

Laurens Bliek Master of Science Thesis

Chapter 4

Shuffled Linear Model

The main contribution of the previous chapter of this thesis is an overview of some popular
techniques for fitting a prediction model for sensor and actuator data. For the practical
application of this research, a choice has to be made for the regression vector ϕ, predictor
function f and optimisation procedure. For the predictor function, the Local Linear model
(LLM) from Section 3-3-2 has been chosen. The chosen optimisation procedure is the Random
Projection Method (RPM) from Section 3-4-3, together with linear least squares as explained
in Section 3-4-3. A choice for the regression vector has also been made. This choice, as well
as the motivation for all of these choices, can be found in Chapter 6.
In this chapter, the LLM combined with the RPM and linear regression is analysed1. To
the author’s knowledge, this has not been done before. The proposal and analysis of this
technique are therefore the main contribution of this thesis. It will be shown that under
certain conditions, the combination of this model and choice of parameters can result in an
accurate model for the relation between input and output data. The accuracy is also analysed,
and it is proved that the model can act as a universal approximator.
Several interpretations exist for this model. Since the theorems in this chapter use similar
proofs as the theorems in the literature of Extreme Learning Machines (ELMs), the main
viewpoint of the model in this chapter will be an extension to ELMs.
This chapter starts with an introduction to ELMs and LLMs in Sections 4-1 and 4-2. Section 4-
3 shows the proposed model, followed by an analysis of the approximation capabilities of the
model in Section 4-4. Section 4-5 gives several interpretations of the model. This chapter is
concluded with suggestions for further research in Section 4-6.

4-1 Introduction

The approximation of nonlinear functions or systems is a problem that appears in many
disciplines [30] and that can be tackled by various approaches. One of these approaches is

1The content of this chapter has also been submitted in scientific paper format to arXiv: see http://arxiv.
org/abs/1308.6498 for more information on this topic.

Master of Science Thesis Laurens Bliek

http://arxiv.org/abs/1308.6498
http://arxiv.org/abs/1308.6498

32 Shuffled Linear Model

to decompose the problem into smaller problems and use a combination of simple solutions
that only work for a small part of the problem. The combination of these local models should
then approximate the global function or system. The LLM is a key example of this strategy,
where a dynamical system is partitioned into multiple operating regimes, and for each regime
a simple linear model is used to model the system.
If the goal is to approximate a function, not to model a system, the use of artificial neural
networks has been a popular approach. One of the most popular algorithms for approximat-
ing a function with neural networks is the backpropagation algorithm (see also Section 3-4-1).
The ELM algorithm as proposed by Huang et al. [26], is an alternative algorithm which out-
performs the backpropagation algorithm in many aspects. Instead of tuning the parameters
of the hidden layer and output layer, the hidden layer parameters are initialised randomly
and kept fixed while the output weights are trained by a linear least-squares method. This
was explained in Sections 3-4-3 and 3-4-3. Since very efficient algorithms are available for
solving linear least-squares problems, the ELM algorithm is an efficient method for training
a feedforward neural network.
Although ELMs can use nodes with many functions that do not at all resemble the activation
functions observed in biological neurons [29], which makes ELMs a very general approach,
to the author’s knowledge they have not yet been extended in such a way that they include
LLMs. The activation functions can be very general, but the hidden network nodes typically
take one of two forms: either additive nodes, or Radial Basis Function (RBF) nodes are used,
while the output is a linear combination of these. This corresponds to the ridge and radial
constructions from Section 3-3. Unfortunately, with this architecture, this type of network
can not be made equivalent to a LLM2. To prove that the same ELM algorithm does work
for LLMs, an extension has to be made.
The ELM algorithm is extended in this chapter to include the use of LLMs, and the ap-
proximation capabilities are analysed and proved mathematically. Since ELMs use randomly
initialised hidden layer parameters, the linear models used in the LLM will be accurate near
a randomly chosen local point. This can be seen as shuffling a deck of cards and handing
a card to each player, where the players are linear models and the cards represent the local
points. The proposed model in this chapter is therefore called Shuffled Linear Model (SLM).
Note that the linear models themselves are not initialised randomly, but follow from linear
regression.
Extending the ELM algorithm to include LLMs gives several advantages, like a better physi-
cal interpretation and the potential to identify nonlinear systems, making the algorithm more
fit for system identification. Besides this, the extension could be used in the area of fuzzy
modelling. Fuzzy models are a popular approach to model nonlinear systems, and can be
used to combine both rigid mathematical concepts and vaguer linguistic concepts, see Sec-
tion 3-3-3. One of the most popular fuzzy models is the Takagi-Sugeno Model (TSM) [21].
TSMs use linear consequences in their fuzzy rules, making them equivalent to LLMs under
some circumstances. This is also shortly analysed in this chapter, but the main point of this
chapter is the extension of the ELM algorithm.

2 The reason that the neural network architecture described in Section 3-3 is not fit for the LLM, is the fact
that the output weights or basis function coefficients αk do not depend on the regression vector. In the LLM,
αk are not parameters but rather (linear) functions of the regression vector ϕ. This can in fact be written in
basis function format, as will be done in this chapter, but the result of this is a network that differs from the
ridge or radial construction approach.

Laurens Bliek Master of Science Thesis

4-2 ELM summary 33

4-2 ELM summary

The ELM architecture is similar to a feedforward neural network with one hidden layer. The
output neurons have a linear activation function, while the hidden neurons have a nonlinear
activation function. The main difference with traditional neural networks is in the tuning of
the parameters: the hidden layer parameters are initialised randomly and remain fixed, while
only the output weights are tuned. This leads to a linear least-squares problem.

Although the original ELM used neural alike hidden nodes, ELMs have been generalised to
include many activation functions that are not neuron alike [31]. The most common example
is the RBF κ(ϕ, βk, γk) = e−βk||ϕ−γk||

2 , with parameters γk ∈ Rl, βk ∈ R>0, and regression
vector ϕ ∈ Rl. Parameters γk and βk are drawn from continuous probability distributions,
according to the RPM. In this chapter, only ELMs with RBF nodes are considered.

For a network with ñ hidden nodes, the output ŷ ∈ Rn of the ELM is:

ŷ =
ñ∑
k=1

αkκ(ϕ, βk, γk) =
ñ∑
k=1

αkκk(ϕ), (4-1)

with αk ∈ Rn the output weight vector connecting the k-th hidden node with the n output
nodes. For t inputs ϕi, this can be written in matrix notation as

Ŷ = Kα, (4-2)

where

K =

 κ1(ϕ1) . . . κñ(ϕ1)
...

...
κ1(ϕt) . . . κñ(ϕt)


t×ñ

(4-3)

and

Ŷ =

 ŷT1
...
ŷTt


t×n

, α =

 αT1
...
αTñ


ñ×n

. (4-4)

If a similar t× n-matrix Y consisting of target output values y is constructed, the goal is to
minimise the sum of square errors:

Et(α) =
t∑
i=1
||ŷi − yi||2 = ||Ŷ − Y ||2F = ||Kα− Y ||2F , (4-5)

where || · ||F denotes the Frobenius norm. Note that the matrices differ from those of Sections
3-4-3 and 3-4-3; some matrices are transposed to stay in line with the ELM literature.

The output weights α that minimise E, can be found by using the Moore-Penrose pseudo-
inverse [24], here denoted as †. This also makes sure that the norm of the output weights are
minimised, for regularisation. Then the optimal solution is:

α∗ = K†Y. (4-6)

Master of Science Thesis Laurens Bliek

34 Shuffled Linear Model

4-3 Proposed model

The predictor function for the LLM was given in Section 3-3-2:

f(ϕ) =
ñ∑
k=1

κ(βk||ϕ− γk||) · (µkϕ+ νk), (4-7)

with κ(x) = e−x
2 , µk ∈ Rn×l, and νk ∈ Rn. In the proposed model, the parameters βk and γk

are drawn from continuous probability distributions, just like in the ELM. The ‘parameters’
αk(ϕ) = µkϕ + νk are to be determined by linear regression. Note that these are not really
parameters anymore, since they are a (linear) function of the regression vector. But µk and
νk can be determined by linear regression, as will be shown in this chapter.

This model will be termed Shuffled Linear Model (SLM) in this thesis, since the Gaussians
determine where a linear model is most valid, and these localities are chosen randomly by
drawing parameters βk and γk from continuous probability distributions. The parameters of
the linear models themselves are not random, but optimised by linear regression. The output
of the above equation will be denoted as SLM(ϕ).

4-4 Universal approximation with SLM

In this section, it will be proved that a SLM, as an extension of an ELM, can act as a universal
approximator, and an upper bound on the number of models will be given. First, it will be
proved that the SLM can act as a universal approximator. After that, several lemmas will
be proved that lead to the main theorem of this paper, where Lemma 2 is used in the proof
of Lemma 3, and Lemmas 1 and 3 are used in the proof of the main theorem. This section
concludes with a learning algorithm for the SLM.

To prove that the SLM can act as a universal approximator, note that the SLM is equivalent
to a radial basis network (see Section 3-3-2), in case µk = 0:

SLM(ϕ)|µk=0 =
ñ∑
k=1

νkκ(βk||ϕ− γk||). (4-8)

See also Equation (3-16). Now, choosing the parameters βk and γk of a radial basis network
randomly, and determining the other parameters from linear regression (in other words, using
the RPM method), results in the ELM model [26]. This implies that the theory of ELMs can
also be used for the SLM. The first theorem follows directly from the theory of ELMs, while
the second one requires some lemmas, where the proof is similar to the proofs found in ELM
theory.

Theorem 1. SLMs are universal approximators. That is, given a continuous target function
f∗ : Rl → Rn and a SLM with free parameters µk and νk, k = 1 . . . ñ, then with probability
one the parameters µk and νk can be chosen in such a way that

lim
ñ→∞

∫
Rn
||SLM(ϕ)− f∗(ϕ)||2dx = 0.

Laurens Bliek Master of Science Thesis

4-4 Universal approximation with SLM 35

Proof. Choosing µk = 0, k = 1 . . . ñ, the SLM is equivalent to an ELM. For an ELM, the
parameters νk can be determined using linear regression to guarantee universal approxima-
tion [31, Thm. II.1].

The interesting part is, of course, whether the extension from ELM to SLM gives any im-
provements. It turns out that a SLM can also be trained using linear regression with all free
parameters, just like an ELM. But for the same approximation accuracy, it needs less local
models than the number of hidden nodes in the ELM. This is simply due to the fact that a
SLM has more free parameters. The remainder of this section is devoted to the proof of these
results, after which an algorithm for training the SLM will be presented.

4-4-1 Necessary lemmas

Before presenting the next theorem, some lemmas will be presented. Most proofs are similar
to those of the ELM theorems [26, 31].

Lemma 1. Given a SLM with inputs ϕi and desired outputs yi, i = 1 . . . t, the total error
Et =

∑t
i=1 ||SLM(ϕi)− yi||2 can be minimised using linear regression.

Proof. Let λk = [µk νk] be the n× (l+ 1)-matrix of the free parameters for model k, and let

λ = [λ1 . . . λñ]T be the (l + 1)ñ× n-matrix of all free parameters. Let also zt =
[
ϕt
1

]
and

κk(ϕ) = κ(αk, βk, ϕ) = e−βk||ϕ−αk||
2 , then the output of the SLM can be written as:

SLM(ϕ) =
ñ∑
k=1

κk(ϕ)λkz. (4-9)

Now the error Et can be rewritten as follows:

Et(λ) =
t∑
i=1
||SLM(ϕi)− yi||2

=
t∑
i=1
||

ñ∑
k=1

κk(ϕi)λkzi − yi||2

=
t∑
i=1
||λT

 κ1(ϕi)zi
...

κñ(ϕi)zi

− yi||2
= ||λTKT − Y T ||2F ,
= ||Kλ− Y ||2F , (4-10)

with

Y =

 y1
T

...
yt
T


t×n

, (4-11)

Master of Science Thesis Laurens Bliek

36 Shuffled Linear Model

and

K =

 κ1(ϕ1)zT1 . . . κñ(ϕ1)zT1
...

...
κ1(ϕt)zTt . . . κñ(ϕt)zTt


t×(l+1)ñ

. (4-12)

This sum of squared errors can be minimised using linear regression, for example by using
the minimum norm least-square solution

λ∗ = K†Y. (4-13)

This completes the proof.

Lemma 2. Given t distinct samples (ϕi, yi) ∈ Rl×Rn, if γk ∈ Rl is chosen randomly from a
continuous probability distribution, then with probability one we have ||ϕi − γk|| 6= ||ϕj − γk||,
for i 6= j, i, j = 1 . . . t.

Proof. The proof is an adaptation to one of the proofs of Huang and Babri [32]. Consider
the set V (ϕi, ϕj) = {γk ∈ Rl : ||ϕi − γk|| = ||ϕj − γk||}. This set is a hyperplane in Rl.
Since this is an (l − 1)-dimensional surface in Rl, and there are only finite i, j, the union
U =

⋃
i 6=j V (ϕi, ϕj) is a finite union of (l− 1)-dimensional surfaces for i 6= j, i, j = 1 . . . t. So,

for any probability density function f , we have P (γk ∈ U) =
∫
U f(γk)dγk = 0.

Therefore, the probability that ||ϕi − γk|| = ||ϕj − γk|| for i 6= j, is 0 for randomly chosen γk,
and the result of the lemma follows.

Lemma 3. Matrix K from Equation (4-12) has full rank with probability one if the matrix
Z = [z1 . . . zt]T has full rank.

Proof. For k = 1 . . . ñ, j = 1 . . . l + 1 and l = k · j, the l-th column of K is given by
[κk(ϕ1)z1j . . . κk(ϕt)ztj]T , where κk(ϕ) = κ(ϕ, βk, γk) = e−βk||ϕ−γk||

2 . Let I = (u, v) be any
interval from R, with u < v. Let p : I → Rt be the curve defined as

p(βk) = [κk(ϕ1) . . . κk(ϕt)]T , (4-14)

seen as a function of βk, for βk ∈ I. Using a similar proof as that of Tamura and Tateishi [33],
it can be proved by contradiction that p(βk) does not belong to a subspace with dimension
less than t.

Suppose it does, then there exists a vector w 6= 0 orthogonal to this subspace:

wT (p(βk)− p(u)) =
t∑
i=1

wiκ(αk, βk, ϕi)− wT p(u) = 0. (4-15)

Without loss of generality, assume wt 6= 0, then

κ(ϕt, βk, γk) = 1
wt
wT p(u)−

t−1∑
i=1

wi
wt
κ(ϕi, βk, γk). (4-16)

Laurens Bliek Master of Science Thesis

4-4 Universal approximation with SLM 37

On both sides of this equation are functions of βk. Taking the s-th partial derivative to βk
on both sides gives the following equation:

∂s

∂βsk
κ(ϕt, βk, γk) = −

t−1∑
i=1

wi
wt

∂s

∂βsk
κ(ϕi, βk, γk). (4-17)

Now, κ is infinitely differentiable w.r.t. βk, with
∂s

∂βsk
κ(ϕi, βk, γk) = (−||ϕi − γk||2)se−βk||ϕi−γk||2 .

Using this fact and Lemma 2, it follows that with probability one, Equation (4-17) actually
contains an infinite number of equations that are linear in parameters wi, for s = 1, 2,
The number of free parameters wi, however, is t. This gives a contradiction. Hence, p(βk)
does not belong to a subspace with dimension less than t.
Since the above contradiction holds for βk from any interval I ⊆ R, it is possible to choose
ñ values β1, β2, . . . , βñ from any continuous probability distribution over R, such that the
following matrix K has full rank:

K = [p(β1) p(β2) . . . p(βñ)]. (4-18)

This is the same t × ñ matrix as the hidden layer output matrix from equation 4-3. The
matrix Z = [z1 . . . zt]T is a t × (l + 1)-matrix. Let M = K ⊗ Z be the Kronecker product
of these matrices. Then M is a t2 × (l + 1)ñ-matrix. Since both K and Z have full rank,
and rank(A ⊗ B) = rank(A)rank(B) for any matrices A and B, the matrix M has rank
r = min(ñ, t) min(l + 1, t).
Now, matrix K actually appears inside matrix M . For matrix M , we have:

M = K ⊗ Z =



κ1(ϕ1)zT1 . . . κñ(ϕ1)zT1
...

...
κ1(ϕ1)zTN . . . κñ(ϕ1)zTN

...
...

κ1(ϕN)zT1 . . . κñ(ϕN)zT1
...

...
κ1(ϕN)zTN . . . κñ(ϕN)zTN


. (4-19)

The t × (l + 1)ñ-matrix K from equation (4-12) follows from this matrix by removing rows
until only the rows with indices (i− 1)(t+ 1) + 1 are left, for i = 1, . . . , t. It follows that the
rank of matrix K is equal to min(t, r) = min(t, (l + 1)ñ), so matrix K has full rank.

4-4-2 Improvement of SLM as an extension of ELM

Using the Lemmas that appeared in this section, the main theorem of this paper, which is
similar to that of Huang [26, Thm. 2.2], can be presented. From the proofs of the Lemmas,
the following definitions are needed:

zi =
[
ϕi
1

]
,

Z = [z1 . . . zt]T . (4-20)

Master of Science Thesis Laurens Bliek

38 Shuffled Linear Model

Theorem 2. Given any ε > 0, and given t distinct samples (ϕi, yi) ∈ Rl × Rn, if matrix
Z has full rank, then there exists ñ ≤ t/(l + 1) such that a SLM with ñ local models can be
trained using linear regression to get Et =

∑t
i=1 ||SLM(ϕi)− yi||2 < ε with probability one.

Proof. The error Et can actually become zero by choosing ñ = t/(l+1). Since Z has full rank,
from Lemma 3 it follows that matrix K also has full rank, with probability one. Then K is
also invertible, since the size of K is t× (l + 1)ñ = t× t. The solution showed at the end of
the proof of Lemma 1 is now actually equal to λ∗ = K−1Y , and the error Et = ||Kλ∗ − Y ||2F
is zero.

Since zero error can be achieved by choosing ñ = t/(l+1), there always exists an ñ ≤ t/(l+1)
to let the error be as small as desired.

Note that the condition that Z has full rank can be easily satisfied, for example by adding
noise to the training samples. This would in fact also be beneficial for regularisation.

Theorem 2 shows that the SLM needs less local models than the number of hidden nodes in
an ELM. This does not necessarily imply a decrease in computation time, since the matrix of
which a pseudo-inverse needs to be computed, has size t×(l+1)ñ, not size t×ñ. An ELM with
n̄ hidden nodes and a SLM with ñ = n̄/(l+ 1) local models are therefore comparable in both
approximation capabilities and in computational efficiency. The construction of the matrix
for which a pseudo-inverse needs to be computed, however, can be done more efficiently due
to the block structure of K, so there is some gain in computational efficiency for a large
number of models or hidden neurons. There might also exist a more efficient way to calculate
the pseudo-inverse of this block matrix.

It is questionable whether it is desired to use less nodes or models in an approach that
uses random nodes and models, since the model performance should not depend highly on
parameters that are chosen randomly.

Still, there are several advantages of the SLM, compared to an ELM. As mentioned above, the
matrix K can be constructed efficiently because it contains a block structure, and maybe in
the future an efficient method to calculate the pseudo-inverse of this matrix could be found.
Besides this, the SLM is not as “black-box” as an ELM, because the output matrix λ actually
shows the direct connections between input and output near several operating points of the
input space. In contrast, the output weights of an ELM only show relations between the
hidden layer and the outputs, not between input and output. Finally, the SLM allows for a
clear physical interpretation due to its similarities with local linear models from the area of
system identification, and its similarities with fuzzy inference models (see Section 4-5-3).

4-4-3 Proposed algorithm

The proposed learning algorithm for the SLM is shown in Figure 4-1. After running the

algorithm, the output of the SLM for input ϕ is given by SLM(ϕ) = λT

 κ1(ϕ)z
...

κñ(ϕ)z

 , for
z =

[
ϕ
1

]
.

Laurens Bliek Master of Science Thesis

4-5 Interpretation of the model 39

SLM learning algorithm

1. Given t input-output pairs (ϕi, yi) ∈ Rl × Rn, randomly generate
parameters αk ∈ Rl and βk ∈ R>0 from a continuous probability
distribution independent of the input.

2. Choose the number of models ñ and let κk(ϕ) = e−βk||ϕ−αk||
2 for

k = 1, . . . , ñ.

3. For zi =
[
ϕi
1

]
, calculate the t× (l + 1)ñ-matrix

K =

 κ1(ϕ1)zT1 . . . κñ(ϕ1)zT1
...

...
κ1(ϕt)zTt . . . κñ(ϕt)zTt

.
4. Put the desired outputs yi in matrix Y = [y1 . . . yt]T and calculate
λ = K†Y by using the Moore-Penrose pseudo-inverse.

Figure 4-1: Proposed SLM algorithm.

4-5 Interpretation of the model

Several interpretations of the SLM are possible. These interpretations will be described in
the following subsections.

4-5-1 ELM interpretation

The main interpretation of the SLM in this chapter is the extension of an ELM with RBF
nodes. The output weights αk of an ELM can be seen as constant functions, since they do
not depend directly on the input. After training an ELM, the output weights are the same
for every possible input of the network. In the SLM extension, the output weights are not
constants, but functions of the input. Instead of multiplying the outputs of the hidden layer
κk(ϕ) with constant output weights αk, they are multiplied with a linear function of the
input: µkϕ+ νk. This also changes the interpretation of output weight to linear model, and
from hidden layer output to model weight.

Since only the parameters in the hidden layer are fixed, a SLM has more free parameters than
an ELM. The vector νk is of size n and the matrix µk is of size n × l. If ñ is the number
of local models in a SLM and n̄ the number of hidden neurons in an ELM, this implies that
the SLM has n× (l + 1)ñ free parameters, while an ELM has only n× n̄ free parameters. A
logical conclusion is that an ELM needs l + 1 times as many neurons as the number of local
models in a SLM, for similar approximation capabilities. This is true under the conditions
shown in Theorem 2.

Master of Science Thesis Laurens Bliek

40 Shuffled Linear Model

4-5-2 RBF interpretation

A SLM can be interpreted as a RBF network, but there are some important differences.
In the first place, it is a generalisation of the RBF network from Section 3-3-2. Several
generalisations of RBF networks exist [34, 35], but the one used in this chapter is similar
to the one proposed by Hunt, Haas and Murray-Smith [36]. Using the notation from this
chapter, a standard RBF network can be denoted as ŷ =

∑ñ
k=1 αkκk(ϕ), while a generalised

RBF network is denoted as ŷ =
∑ñ
k=1 αk(ϕ)κk(ϕ), letting the output weights depend on the

input3. Using αk(ϕ) = µkϕ+ νk, where the output weights are a linear function of the input,
this is equivalent to a SLM.

In the second place, a SLM differs from a RBF network in the way the hidden layer parameters
are chosen. It is customary in RBF networks to let the location of the centers of the Gaussians
γk be the same as some of the training samples ϕi, or else to determine them by some sort of
clustering algorithm. In a SLM, both the centers γk as well as the widths βk of the Gaussians
are taken from a continuous probability distribution, and are therefore independent of the
training samples4. This has the advantage that no prior information about the training
samples is necessary, and that it takes practically no time to determine the parameters.

Figure 4-2 shows the structure of a local linear model in a similar fashion as the structure of
the RBF network showed in Figure 3-5.

− || · || β1 µ1ϕ+ ν1

− || · || β2 µ2ϕ+ ν2

− || · || βñ µñϕ+ ν1ñ

+

...
...

...

ϕ
γ1

ϕ
γ2

ϕ
γñ

f(ϕ)

Figure 4-2: Structure of the Shuffled Linear Model. Parameters βk and γk are fixed randomly,
while parameters µk and νk follow from linear regression.

3The generalised RBF as defined by Hunt, Haas and Murray-Smith, differs from a standard RBF network
in three aspects. Only one of these aspects is considered here, namely that the output weights can depend on
the input.

4The probability distribution of the parameters γk and βk can be any continuous probability distribution,
for example the normal or the uniform distribution. However, the distribution of βk should be such that
P (βk ≤ 0) = 0, since βk ∈ R>0. In theory this is the only constraint, but in practice there might be more
constraints due to rounding errors in the numerical evaluations of the Gaussians.

Laurens Bliek Master of Science Thesis

4-5 Interpretation of the model 41

4-5-3 Fuzzy interpretation

The SLM can also be compared to the fuzzy Takagi-Sugeno Model (TSM). Comparisons
between the TSM and a generalised radial basis network have already been made [36]. Fol-
lowing the same line of thought, it is not difficult to show the equivalence between the TSM
and SLM models. The TSM consists of a number of fuzzy if-then rules with a fuzzy premise
and a linear consequence, e.g.

Rk : if ϕ1 is A1 ∧ ϕ2 is A2 ∧ · · · ∧ ϕl is Al
then αk(ϕ) = µkϕ+ νk (4-21)

The TSM is equivalent to the generalised RBF network, and therefore also to the SLM, if 1)
the membership functions within each rule are all Gaussians, and 2) the operator used for the
fuzzy ∧ is multiplication. Using multiplication for the if-then part as well, and letting κjk(ϕ)
denote the fuzzy membership function of the fuzzy set Aj of fuzzy rule Rk, this result comes
as follows:

TSM(ϕ) =
ñ∑
k=1

l∏
j=1

κjk(ϕ(j))(µkϕ+ νk)

=
ñ∑
k=1

l∏
j=1

e−βk(ϕ(j)−γ(j)
k

)2(µkϕ+ νk)

=
ñ∑
k=1

e
−βk

∑l

j=1 (ϕ(j)−γ(j)
k

)2
(µkϕ+ νk)

=
ñ∑
k=1

e−βk||ϕ−γk||
2(µkϕ+ νk)

= SLM(ϕ). (4-22)

A SLM can therefore be seen as a TSM with randomly generated membership functions for
the premises of the fuzzy rules. Using this result and Theorem 2, the following holds:

Corollary 1. Theorem 2 also holds for the Takagi-Sugeno fuzzy model with ñ fuzzy rules, if
the membership functions for each rule are Gaussians with parameters chosen randomly from
continuous probability distributions, and the operator used for the fuzzy ∧ is multiplication.

4-5-4 LLM interpretation

LLMs usually appear within the context of nonlinear dynamical systems, where the nonlinear
system is approximated by taking a weighted sum of simpler (linear) models. These linear
models can be seen as linearisations of the nonlinear system around an operating point, and
the weights are used to describe the transitions between the operating points. The problem
of using a LLM to approximate a nonlinear dynamical system, belongs to the area of system
identification. Several overviews of identification techniques for local models exist [37, 12].

Master of Science Thesis Laurens Bliek

42 Shuffled Linear Model

The input of such a dynamical LLM consists of past inputs and outputs or states of the
system, while the output of the dynamical LLM should give the next output or state of the
system, e.g.

st+1 = f(st, ut), (4-23)

where s is the output or state, and u the control input of the dynamical system. If the
function f is differentiable, it can be linearised around an operating point (s(k), u(k)), to get:

f(st, ut) ≈ f(s(k), u(k)) + ∂f

∂st
(s(k), u(k))(st − s(k))

+ ∂f

∂ut
(s(k), u(k))(ut − u(k))

= Akst +Bkut +Ok, (4-24)

where Ak and Bk are the partial derivatives of f w.r.t. s and u respectively, and Ok =
f(s(k), u(k)) − Aks(k) − Bku(k). The local linear model is then a weighted sum of these lin-
earisations:

LLM(st, ut) =
ñ∑
k=1

κk(st, ut)(Akst +Bkut +Ok), (4-25)

where κk is a scalar-valued function that represents the validity of the local model. The
relationship between these kinds of dynamical LLMs and TSMs has also been investigated [38].

Replacing (st, ut) by a general ϕt, the model can be used for both dynamical systems and
functions in general.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−10

−5

0

5

ϕ

y

Figure 4-3: Example of a SLM. At each local point γk

(denoted by an asterisk), which are all chosen randomly, a
linear model (line segment) is multiplied with a Gaussian
(curve near the horizontal axis) to approximate the original
function locally. The sum of these local models gives the
output of the SLM.

Now, for a SLM, the weights are Gaus-
sian functions of the input, but the pa-
rameters of the Gaussians (i.e. their
centers and widths, or the operating points
and regimes) are chosen randomly. This
implies that the linear models are sup-
posed to be good approximations of the
global system around randomly chosen
operating points, while the traditional
approach is to use a gradient-descent
type algorithm to determine the opti-
mal operating points and regimes. The-
orem 2 shows that even with randomly
chosen operating points and regimes, it
is possible to approximate any function
with any desired accuracy, as long as
the number of local models ñ is high
enough. This can be done with a direct
algorithm, as an efficient alternative to
iterative methods.

Figure 4-3 shows an example of using an SLM to approximate a one-dimensional function.
Operating points are chosen randomly and are denoted with an asterisk. Gaussian widths
are chosen randomly as well, and are showed at the bottom of the graph (in this case, the

Laurens Bliek Master of Science Thesis

4-6 Further research 43

widths do not differ much). Linear models are found by linear regression, and are showed as
line segments. When the linear models are multiplied with their respective Gaussians and
added together, this results in an approximation of the function.

4-6 Further research

The SLM as discussed in this chapter gives rise to many questions. A few questions for further
research could be:

• For which supervised learning problems is the SLM the best option?

• Can nonlinear local models be used in the same way as the linear models in the SLM?

• Can the SLM also be used for other (un)supervised learning problems?

• What would be the effect of normalisation in the RBF nodes?

• Which probability distributions should be used for the randomly chosen parameters?

For the first question, the paper on arXiv5 shows one example where the SLM works, though
it is not necessarily the best model to use, so the question remains unanswered. Since this
thesis already has one practical application as a goal, this question is not further discussed.

As for the second question, Appendix B shows an example with a local bilinear model that
can be used in the same way as the SLM. In fact, any model for which the model output
depends linearly on the model parameters could be used in a similar fashion as the linear
models in the SLM. This is due to the fact that the linearity of the relation between local
model output αk(ϕ) and regression vector ϕ is not used; only the linearity of the relation
between local model output αk(ϕ) and its parameters is used. This result greatly increases
the number of models that can be used in a similar way as the linear models in the SLM
approach.

The third question can actually be answered by looking at the link between neural networks
and kernel methods. It turns out that the SLM actually gives rise to a specific kernel: a
Gaussian kernel multiplied with a linear kernel: K(x, y) = e−β||x−y||

2
xT y. This is proved

in Appendix B. Many supervised and unsupervised learning problems, like classification,
clustering and dimension reduction, can be solved using kernel methods [39].

The last two questions are not answered in this thesis and remain open for further research.
However, the last question should be answered somewhere in this thesis if the SLM model is
to be used. This is done in the next chapter. The choice of the probability distribution for
the parameters in the next chapter is mostly based on insight and trial and error, so research
in this direction could be beneficial.

5http://arxiv.org/abs/1308.6498

Master of Science Thesis Laurens Bliek

http://arxiv.org/abs/1308.6498

44 Shuffled Linear Model

Laurens Bliek Master of Science Thesis

Chapter 5

Control for System Identification

In the previous chapter, the prediction error method was used to construct a predictor f to
approximate the relation between input and output data: yt = f(ϕt−1) + εt, where ϕt−1 is
the regressor consisting of past inputs and outputs, and ε is the prediction error. Control
was not considered in the previous chapter, but in this chapter the focus will be on using the
control in such a way that it aids the prediction process of the agent. The prediction process
is defined in this thesis as fitting a model that can correctly predict the next sensor data,
given past sensor and actuator data.

Since the last chapter was also dedicated to this same goal, the role of control in this process
must be clearly understood. Control can be used to determine which data the model will
encounter in the future. For example, a robot that stands still the whole time will probably
also encounter the same data each timestep. This is easy to learn, but not the desired
outcome: the model should accurately be able to predict the next sensor data given past
sensor and actuator data, for various situations and various choices of the control. Besides
the regularisation element discussed in Section 3-5, there should be some kind of exploration in
the agent to encounter various situations. The control can play a key part in this exploration,
and should be used to get this kind of behaviour in the agent.

In this chapter, the concept of reinforcement learning and intrinsic motivation is explained
in Section 5-1, and the role of control is also further explained. The other sections examine
various techniques using intrinsic motivation to get the desired behaviour in an agent.

5-1 Intrinsic motivation

A common technique to let an agent perform the desired behaviour, is reinforcement learn-
ing [40]. When the agent performs the desired behaviour, it is rewarded, and when it does not,
it might receive a penalty. The control is then chosen in such a way that the future reward
is maximised. An example is to let an agent receive a reward proportional to its distance to
some target location. In this example, it is expected that the reward-maximising agent will
eventually reach the target location.

Master of Science Thesis Laurens Bliek

46 Control for System Identification

In this thesis, the desired behaviour of the agent is to let it explore various situations while
predicting the next sensor data correctly. This is a big difference with most reinforcement
learning problems, where external information is used to determine for example the distance to
a target location. In the problem of this thesis, no external information is available. The only
‘target’ is some vague term like ‘exploratory behaviour’, and the only information available
is the past sensor and actuator data, and the information of the predictor.

It turns out that the information of the predictor, especially the prediction error, can be very
useful in influencing the agent’s behaviour. Inspired by psychological concepts, using this
internal information in combination with reinforcement learning, has been termed ‘intrinsic
motivation’ [41]. Several methods fall under this category.

5-2 Exploration versus exploitation trade-off

Before considering the various techniques that use intrinsic motivation, the problem should
be defined more precisely. The research question of this chapter is the following: How can
control be used to aid in the learning process? The goal can be defined more precisely
as follows:

Given at timestep t a predictor f as proposed in Chapter 3 and past
input-output data ϕt−1, choose input data ut in such a way that the
future total error ET =

∑T
i=1 ||yi − f(ϕi−1)||2 is minimised for as many

different ui and yi as possible.

Here, T > t is some future timestep, possibly at infinity, that indicates when to stop doing
what we are doing in this thesis: learning the relation between sensor and actuator data. At
this timestep, it is desired not only that the prediction errors have been minimised, but also
that this has been done for as many different situations as possible.

As will be made clear in this chapter, these goals are contradictory. For many models, dealing
with new data, also called validation or generalisation, is a difficult task, and usually causes
large errors. The two subgoals can be seen as an exploitation vs. exploration trade-off. While
keeping the error low, the knowledge of the predictor is exploited. At the same time, the
controller is used to explore new situations to make sure that the ui and yi are different.
Several methods to achieve both of these subgoals are investigated in the following sections.

5-3 Methods using intrinsic motivation

5-3-1 Random movement

The first method discussed here does not really make use of any information available to the
robot. At the first timestep, there is no past input or output data so the choices for the
control are limited. Since no external knowledge is available to the autonomous robot, it
makes sense to just choose a random control value in this case. A probability distribution F
has to be defined over all possible control values, so this is knowledge that should be available
to the agent. Then the control takes the form

Laurens Bliek Master of Science Thesis

5-3 Methods using intrinsic motivation 47

ut ∼ F. (5-1)

Using random movement for several timesteps, it is expected that exploratory behaviour does
occur: different ut will be chosen due to the randomness. However, this does not imply a
diversity in the sensor data yt. For example, if an agent can move in different directions, and
the control for each direction has the same probability of being chosen, it is expected that
random movement will cause the agent to stay near its initial position, while choosing the
same direction for several timesteps might put the agent in a new situation.

There are several other disadvantages to choosing random movement. The probability that
an agent encounters an old situation (one it has already encountered), can be very high,
increasing the required number of timesteps for learning different situations. There is also
no guarantee that the predictor will be able to succesfully predict the result of a random
movement.

Nevertheless, interesting results have been obtained by combining this approach with e.g.
chaotic search [42, 43] or confidence [44].

5-3-2 Minimise prediction error

For the autonomous agent equipped with a predictor, more information than just input and
output data is available. Since the predictor produces a predicted output ỹt = f(ϕt−1) each
timestep, the error εt = yt − ỹt can also be used. As discussed in Section 3-4, the square of
these errors is used in determining the quality of the model. This can also be used for the
controller: if a negative reward is used proportional to the prediction error, it is expected that
a controller that maximises this reward, will minimise the future total error. The controller
then cooperates with the predictor by using the optimal solution u∗t to the problem:

min
U

=
T∑
i=1
||εi(ut)||2, (5-2)

with U⊆ Rm the set of possible control values u. The error is written as a function of the
control here, since this chapter focuses on the choice of control only, while the choice of
parameters was discussed in the previous chapter.

Now, the main problem is that the choice of ut can only influence the errors of future timesteps,
not of previous timesteps: εi(ut) = εi, for i ≤ t. But the only known errors are those of
previous timesteps: the errors of future timesteps are unknown at timestep t. Several options
for solving this problem will be examined in Section 5-4. For now, let us assume there are
methods to deal with these future errors, then the objective function can be simplified by
leaving out those timesteps that are not influenced by the control of timestep t:

min
U

T∑
i=t+1

||εi(ut)||2. (5-3)

The expected behaviour of an agent with a predictor and a controller that minimises the
prediction error, is trivial. It is expected that only those actions are chosen that give the

Master of Science Thesis Laurens Bliek

48 Control for System Identification

lowest prediction error, which could be the actions that move the agent towards situations
that have already been learned, or trivial situations like standing still or staring at a black
screen. One goal of the main problem in this thesis would be solved, namely how to predict the
next sensor data given the current sensor and actuator data. This is described in Section 5-2
as the exploitation part. The exploration part, however, would not be solved: the controller of
the agent is not ‘motivated’ to choose actions that lead to new situations for the agent. This
shows that both of these aspects are important, and the controller should aid the predictor
by providing exploratory behaviour rather than just aiding the predictor by choosing actions
that minimise the prediction error.

5-3-3 Maximise prediction error

One way to get exploratory behaviour is to reward the agent for going to situations where
the prediction error is high. Since the predictor itself still minimises the prediction error, it
is expected that a situation with a high prediction error is actually a new situation. The
controller then uses the optimal solution u∗t to the following problem:

max
U

T∑
i=t+1

||εi(ut)||2. (5-4)

This is exactly the opposite of the result from the previous section. The expected resulting
behaviour is changed: instead of choosing the actions that are easiest for the predictor, the
most unpredictable actions will be chosen. For example, if the predictor has learned what
will happen when a robot moves to the left, the controller that maximises the prediction error
might then choose to move to the right. The controller and the predictor are then adversaries,
while the previous approach showed a cooperating controller and predictor.
It is expected that maximising the prediction error leads to exploratory behaviour. Never-
theless, several researchers [45, 46, 47] pointed out that there are some drawbacks: since the
controller is actually an adversary for the predictor, it might find ways to prevent the pre-
dictor from learning. For example, it might provide such instable behaviour that the sensor
data becomes very noisy. Or it might move the system towards a part of the environment
that is noisy. If it is possible to move the system towards a situation where no learning is
possible, this approach can cause practical problems. The controller and predictor should not
be adversaries, but complement each other. There should be a balance between exploratory
behaviour and predictability.

5-3-4 Homeokinesis

Recently [48], the problem of retaining a balance between exploratory behaviour and pre-
dictability has been tackled by backpropagating the prediction error through the sensorimotor
loop to get the time-loop error TLE t of the loop (also called reconstruction error), and let
the controller minimise this error instead. This process has been termed homeokinesis. If an
inverse of the predictor f is defined as g(ỹt+1) = g(f(ϕt−1) = ϕt−1

1 , the reconstruction error
1It is by no means clear that the predictor is invertible. However, an approximation of the inverse of the

predictor could be constructed in various ways, for example by using a Taylor expansion or a similar model as
the predictor itself, but with the inputs and outputs reversed.

Laurens Bliek Master of Science Thesis

5-3 Methods using intrinsic motivation 49

could be seen as the difference between the reconstructed regressor and the real regressor:
TLEt = ϕt−1 − g(yt+1).
The homeokinetic controller then uses the optimal solution u∗t to the following problem:

min
U

T∑
i=t+1

||TLEi(ut)||2. (5-5)

It is expected that an agent with this type of controller maintains a balance between ex-
ploratory behaviour and predictability. The reason for this is not trivial, but explaining it
is beyond the scope of this thesis. And even with this balance, there are some drawbacks to
using homeokinesis. The main drawback is the choice of the function g: inverting the pre-
diction process is not at all a trivial process, especially with the complex predictor functions
discussed in the previous chapter. Injectivity and surjectivity can not always be guaranteed,
and if Taylor expansions are used, it is assumed that the predictor is differentiable. Even if
it is, matrix invertibility can become an issue. An approach that maintains the same balance
between exploratory behaviour and predictability, but without using an inverse predictor,
would be highly beneficial for solving the problem of this thesis.

5-3-5 Maximise learning progress

Various researchers [47, 46] recognised the drawbacks of maximising the prediction error, and
a new reward was defined: the learning progress LP . Intuitively, an agent should not just
be driven towards situations where the prediction error is high, because there is no guarantee
that the predictor can adapt to those situations. Rather, an agent should be driven towards
situations where the predictor actually learns the relation between sensor and actuator data.
These are the situations where the prediction error is decreasing. The learning progress is
therefore defined as the decrease in prediction error. Still, several definitions exist [41], for
example LPt = εt−1−εt or LPt = εt−ε′t = f(ϕt−1, θt−1)−f(ϕt−1, θt), where ε′ is the difference
between real sensor data yt and predicted sensor data after the parameters of the predictor
function have been updated.
Within this approach, the controller uses the optimal solution u∗t to the following problem:

max
U

T∑
i=t+1

||LPi(ut)||2. (5-6)

There are two situations in which the reward for this controller is low. One is a situation
where the predictor can already achieve a low prediction error, and no further improvement
is possible. The second is a situation where the predictor might give a large error, but also
cannot adapt in such a way that the error becomes lower. Preventing both learned and
unlearnable situations, it is expected that the controller moves the agent towards situations
where the predictor can be improved. Like in the approach of homeokinesis, this results in a
balance between exploratory and predictable behaviour, but without the need of computing
or approximating the inverse of the predictor.
Although there are quite some advantages to this technique, one drawback follows from the
definition of the learning progress: alternating between unlearnable situations and situations

Master of Science Thesis Laurens Bliek

50 Control for System Identification

that have already been learned, can still result in a large learning progress. This might prevent
the controller from moving towards situations where the predictor can learn. A solution to
this drawback exists, and will be explained in the next section.

5-3-6 Intelligent Adaptive Curiosity

To prevent an agent that maximises the learning progress from alternating between complex
unlearnable and simple learned situations, a solution has been suggested by Kaplan and
Oudeyer [49]. This method has been called Intelligent Adaptive Curiosity (IAC). The idea
is to divide the predictor into several experts, which are all specialised in predicting the
future sensor data given the current sensor and actuator data for a specific situation. If
the learning progress is then defined as the decrease in errors for a specific situation, it is
expected that maximising the learning progress will not result in alternating between two
different situations, since this does not necessarily give a large learning progress.

The learning progress for situation s is defined as LPs = εst−1 − εst , where εst is the error at
timestep t of expert s, and εst−1 is the error of expert s at the previous timestep where the
situation was specific to expert s.

The manner in which the predictor is decomposed into several experts, will not be described
in this section. But the way the control is chosen, is as follows: for each timestep i, choosing
control ui would result in a specific situation s(ui), for which there is only one expert. In this
situation, there will also be a learning progress. The control that would result in the highest
learning progress, is chosen. This gives the following problem:

max
U

T∑
i=t+1

||LPs(ui)(ut)||2. (5-7)

As soon as one expert learned to predict correctly what happens in a specific situation, the
prediction error will stay low in that situation. This implies that the learning progress of this
situation is also low, even when alternating with an unpredictable situation, and the control
that leads to this situation will not be chosen anymore. Similarly, unpredictable situations,
where the prediction error can not be decreased by the predictor, will give a low learning
progress, even when alternating with predictable situations. The expected result is that the
agent will move towards those situations where the error can decrease, instead of moving
towards learned or unlearnable situations, or alternating between the two.

5-4 Optimising with future data

In this chapter, several control types that influence the behaviour of the agent have been pro-
posed. As is usual in the reinforcement learning framework, these controllers were maximising
the future reward, giving a problem of the form

max
U

T∑
i=t+1

Ri(ut), (5-8)

Laurens Bliek Master of Science Thesis

5-4 Optimising with future data 51

where Ri(ut) is the reward at timestep i if ut would be chosen at timestep t. For example, in
the approach of minimising the prediction error, we have Ri = −εi. As stated in Section 5-3-2,
the problem is that future rewards are unknown, even when choosing a ut, so it is impossible
to know which ut would maximise the sum of rewards. Besides this, if T is infinite, the sum
might not be bounded. For infinite T , this can be solved by including a discount factor γ,
giving the problem:

max
U

T∑
i=t+1

γi−tRi(ut). (5-9)

Several algorithms deal with this kind of objective function [40]. However, most of these
algorithms are not quite fit for this thesis. Many are only fit for discrete environments, discrete
action spaces, require external knowledge not available in this thesis, or require too much
computation time. Therefore, the approach in this thesis is to take a simple approximation
of the future reward, by using previous rewards. The upper bound T is chosen to be equal
to t+ 1, until some final timestep T̂ , making sure that only the reward of the next timestep
needs to be computed. Then an approximation of the next reward can just be chosen as
Rt+1(ut) = Rt′(ut) or Rt+1(ut) = Rt′(ut) + (Rt′(ut) − R(t−1)′). Here, Rt′(ut) is the reward
of the last timestep where ut was chosen, and R(t−1)′(ut) is the reward of the last timestep
before t′ where ut was chosen. Alternatively, higher-order approximations can be used, like
polynomial extrapolation, or another predictor could be used just for the rewards.

The above approximation of the future reward requires a drive to try new control values, since
it looks only at past control values. This can be done using random control values with a
certain probability, or in the case of continuous control values, by adding some random value
to the chosen control value.

The use of approximations for the future rewards is justified by the goal we are trying to
achieve. The goal is not to find the control that is an exact optimal solution of the optimisation
problem (5-8), but rather to find a control that will cause a behaviour of the agent that aids
the prediction process, both in accurately predicting the next sensor data and by making
sure different situations will occur. The predictions should be exact, but the control will
mainly determine the data that will be encountered by the predictor. As long as the general
behaviour is as desired, like preventing situations where the predictor has already learned to
predict correctly, and preventing unlearnable situations, the controller has achieved its main
goal. It is expected that even when using approximations of the future rewards, the general
behaviour that emerges, is similar to the expected behaviours described in Sections 5-3-2
to 5-3-6.

Master of Science Thesis Laurens Bliek

52 Control for System Identification

Laurens Bliek Master of Science Thesis

Chapter 6

Experiments

6-1 State-space dynamics

Combining the results of chapter 3 about system identification and chapter 5 about control
for system identification, some techniques from these chapters are combined and tested on
a mobile robot. As stated in section 2-2, the robot has visual sensors and differential drive
dynamics. Let u be the control input of the robot, x the state of the robot ([x1, x2] is the
position and x3 the orientation), and y the visual sensor output. Then the robot dynamics
can be described as a state-space model:

ẋ =

 1
2r cos(x3) 1

2r cos(x3)
1
2r sin(x3) 1

2r sin(x3)
r
L − r

L

u,
y = h(x), (6-1)

where r is the wheel radius of the robot, L the distance between wheels, and the function
h represents the relation between the state of the robot and the visual sensor data. Using
system identification techniques from chapter 3 to find the unknown parameters r and L,
and unknown function h, with the aid of control techniques from chapter 5, this could lead to
having a description of the relation between actuator and sensor data of the agent. This would
answer the main research question of this thesis. However, one major problem is the function
h: the relation between the position and orientation of the robot and the visual sensor data
is very complex. This function should contain all information about the environment, about
the way the visual sensors are attached to the robot, about what happens to the visual data
when the robot performs a specific movement, 3D-information about objects, etc. This task
is too complicated for all of the algorithms discussed in this thesis.

Besides this problem, the state is not known to the robot. The state would have to be
estimated from the sensor data, which leads to similar problems as learning the function h.
For these reasons, the state-space model (6-1) is not used in the application of this thesis.

Master of Science Thesis Laurens Bliek

54 Experiments

6-2 Sensor space dynamics

Instead of looking at the dynamics of the position and orientation of the robot, the state-
space dynamics, it is possible to look at the dynamics in the sensor space. Instead of using a
state-space description like

ẋ = g(x, u),
y = h(x), (6-2)

the following equation can be used:

ẏ = h(y, u). (6-3)

This could both be seen as a state-space model with the sensor data as state and no output,
or as a first-order input-output (NARX) model.
As an example, suppose the robot has a 3 by 3 pixel camera with brightness values a to i.
Suppose also that the robot moves to the left until all pixels are shifted one pixel to the right
(not considering the depth of the image), and three new pixels appear:

 a b c
d e f
g h i

 −→
 j a b
k d e
l g h

 .
If the sensor data is written in vector form, this gives the following relation:

[a b c d e f g h i]T −→ [j a b k d e l g h]T .

This transformation can be realised by a matrix multiplication and vector addition:



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





a
b
c
d
e
f
g
h
i


+



j
0
0
k
0
0
l
0
0


=



j
a
b
k
d
e
l
g
h


. (6-4)

This shows that for a specific situation, the dynamics in sensor space should not be too hard
to learn, since they are even linear in the above example. No relation between position and
sensor data is required.
Of course, the function h is a complex nonlinear function that cannot be described by a
single linear transformation. For different control values u of the robot, the mapping will be
different. But at different locations in the environment the mapping might also be different
due to the object depth, noise, shadow and lighting, higher-order dynamics like inertia and
slipping, etc. But around a local point (ŷ, û), the function can be approximated by a linear
transformation.

Laurens Bliek Master of Science Thesis

6-3 Choice of predictor 55

6-3 Choice of predictor

The above observation leads to the insight to use the Local Linear model (LLM)from Section 3-
3-2, where the global model is a weighted sum of local linear models, and each local model is
valid only in a specific regime of the input space. Using this model, it is expected that a local
model that is more valid in a regime of the input space where the control moves the robot
to the left, will have larger values in the diagonals below the main diagonal. Similarly, local
models that are more valid in a regime of the input space where the control moves the robot
to the right, should have larger values in the diagonals above the main diagonal. The goal is
to let the predictor learn these models from the given data, and the goal of the controller is to
make sure several of these situations actually occur so that the predictor gets the opportunity
to learn them.

Table 6-1 shows the properties of the predictor. The chosen predictor function is the LLM:

f(ϕ) =
ñ∑
k=1

κ(βk||ϕ− γk||)(µkϕ+ νk).

The choice of regression vector and method of parameter estimation will be motivated in the
remainder of this section.

Table 6-1: Chosen properties of the predictor.

Regression vector ϕt−1 = (ut−1, yt−1)
Predictor function LLM

Method of parameter estimation RPM + Linear least squares

6-3-1 Choice of regression vector

Section 3-2 of this thesis focuses on the choice of the regression vector. For the application
in this chapter, the choice has been made to use the sensor and actuator data of the last
timestep to predict the sensor data of the following timestep. This corresponds to an input-
output model of the NARX type. This chapter already explained why a state-space model
for the robot dynamics is not used, and why the sensor dynamics are considered instead.

It would be possible to use data of previous timesteps, however. For example we could
choose ϕt−1 = (yt−1, yt−2, . . . yt−p, ut, ut−1, . . . ut−q) for some p, q. However, the sensor data
consists of images, which is high-dimensional data. Using many images can give computational
problems. Since the actuator data for the mobile robot is low-dimensional, it is actually
possible to use the actuator data of several timesteps without increasing the computation
time too much. Still, the choice has been made to use only the actuator data of the last
timestep, since the experiments are simple enough to not take higher-order dynamics like
inertia into account.

This is also related to the Markov property from probability theory, where future states of
a process only depend on the present state, not the whole past. In the application of this
thesis, the assumption is that the sensor data of the next timestep depends only on the current
sensor and actuator data. No higher-order dynamics is taken into account, and it is assumed

Master of Science Thesis Laurens Bliek

56 Experiments

that the robot cannot change the environment for example by moving objects. For the simple
experiments conducted in this thesis, these assumptions should be fairly accurate.

The motivation for the choice of regression vector, as well as an overview of alternatives, is
shown in Figure 6-1.

6-3-2 Choice of predictor function

Section 3-3 showed several possibilities for the choice of the predictor function. In this chapter,
the motivation for choosing the LLM was explained. Around a specific point in the input
space, the sensor dynamics can be approximated by a linear model. This increases the number
of parameters compared to the other models described in this thesis. In all other models of
Section 3-3, we have the vectors αk ∈ Rn, for k = 1, . . . ñ. But for the LLM, parameters
αk ∈ Rn×l are matrices. With more parameters, it is expected that this model will have
better accuracy, at the cost of more computation time. Therefore, the model order ñ can be
lower than when using other predictor functions. This was discussed in Chapter 4.

The motivation for the choice of predictor function, as well as an overview of alternatives, is
shown in Figure 6-2.

6-3-3 Choice of parameters

To prevent having to use an iterative nonlinear least squares algorithm for optimising over all
parameters θ, the parameters βk, γk will be chosen randomly from a continuous probability
distribution, and stay fixed. If the optimisation is then performed over parameters αk only,
the problem is reduced to a linear least squares problem as described in Section 3-4-3. Using
the Moore-Penrose pseudo-inverse, the parameters αk will not only be optimal in the least-
squares sense, but will also have minimum norm. Section 3-4-3 further describes how this is
combined with the random choice of the other parameters.

Fixing the parameters βk, γk has the consequence that optimising the parameters becomes a
least-squares problem. But choosing the parameters randomly βk, γk has the advantage that
no prior knowledge is necessary: as soon as the robot ‘wakes up’ or starts working, it will not
have knowledge of the environment or its actuator or sensor data, so choosing the parameters
randomly is the only option there is. Tuning these parameters afterwards is possible, but
then the parameters αk would have to be tuned over and over again every time the other
parameters are adapted. This is a possibility, but not the one chosen in this thesis.

In Chapter 4, it was shown that the LLM can indeed be trained by optimising over parameters
αk only, letting parameters βk, γk be fixed randomly. This approach was called Shuffled Linear
Model (SLM), and parameter estimation of the model is reduced to a linear least squares
problem. The accuracy of the model was also analysed theoretically, with proofs about the
approximation capabilities of the model and an upper bound on the model order ñ.

The motivation for the choice of parameters, as well as an overview of alternatives, is shown
in Figure 6-3.

Laurens Bliek Master of Science Thesis

6-3 Choice of predictor 57

Choice of regression vector
What will be used as input for the predictor?

Input-output models
Chosen because:

• direct relation between actuator
and sensor data

• uses sensor space dynamics instead
of state space dynamics

• no recursion problems

State-space models
Not chosen because:

• function from state to output too
complex

• states are unknown

• recursion problems

NARXNFIR NARMAX

Chosen because:

• NFIR would need all control
values from the whole past
and cannot handle sensor
space dynamics

• NARX handles sensor space
dynamics and does not need
data from the whole past

• NARMAX has recursion
problems like state-space
systems

LTI Bilinear Block-
oriented

RNN

Figure 6-1: Motivation for the choice of regression vector, and alternatives that were discussed
in this thesis.

Master of Science Thesis Laurens Bliek

58 Experiments

Choice of predictor function
What kind of predictor will be used?

Basis function expansion
Chosen because:

• can use universal approximators

• many parameter estimation techniques are
available

Radial construction
Chosen because:

• allows for
approximation
near local points

Ridge con-
struction
Not chosen
because:

• hard to
interpret
parameters

Tensor
products
Not chosen
because:

• can be slow

• is more
useful
with prior
knowledge

RBF network
Not chosen be-
cause:

• need more
hidden
nodes than
LLM

• harder to
interpret
parameters
than LLM

LLM
Chosen because:

• need less
local
models

• parameters
can be
interpreted

• local ap-
proximation
by a linear
model is
more
accurate
than a
constant
model

Sigmoid
neural
network

Fuzzy
modelling

Figure 6-2: Motivation for the choice of predictor function, and alternatives that were discussed
in this thesis.

Laurens Bliek Master of Science Thesis

6-3 Choice of predictor 59

Parameter estimation
How are the model parameters determined?

Least squares
Chosen because:

• many techniques available

• equal to the maximum likelihood method if errors are assumed
white-noise gaussian

• excellent asymptotic properties

Nonlinear least squares
Not chosen because:

• can get stuck in local
minima

• iterative, may converge
slowly or not at all

• slow if there are many
parameters

Linear least squares
Chosen because:

• direct method that finds global optimum for
linear parameters

• fast algorithms exist

• not iterative, so always finds a solution

How are the nonlinear parameters determined?

N
ew

to
n’
s
m
et
ho

d

G
ra
di
en
t
de

sc
en
t

G
au

ss
-N

ew
to
n

Le
ve
nb

er
g-
M
ar
qu

ar
dt

C
on

ju
ga

te
gr
ad

ie
nt Random

Projection
Method
Chosen because:

• No prior
information
needed. Can
be used
before seeing
the data.

• Takes
practically
no time

• Proof of
universal ap-
proximation
for some
models

Constructive methods
Not chosen because:

• Training data is
required beforehand.

• Can require a lot of
time.

• Not always
guaranteed universal
approximation.

Tr
ai
ni
ng

sa
m
pl
es

C
on

st
ru
ct

la
tt
ic
e

C
lu
st
er
in
g

H
eb

bi
an

le
ar
ni
ng

G
en

et
ic

al
go

rit
hm

s

Figure 6-3: Motivation for the choice of parameter estimation, and alternatives that were dis-
cussed in this thesis.

Master of Science Thesis Laurens Bliek

60 Experiments

6-4 Choice of control

In Chapter 5, various types of controllers that maximised a certain type of internal reward are
discussed. The expected behaviour of an agent equipped with these controllers, was different
for each controller, and each had their merits and drawbacks. For example, minimising
the prediction error with both the predictor and controller, normally leads to homeostatic
behaviour like standing still or performing the same movement over and over again. The
desired behaviour is exploratory behaviour: the controller has to ensure that as much new
sensor and actuator data is provided that the predictor can handle.

The approach of maximising the learning progress from Section 5-3-5, was the simplest ap-
proach analysed in this thesis to maintain a balance between exploratory and predictable
behaviour. It turns out that, because of the simplicity of the experiments, the drawbacks
of this approach are not a big problem. It is not possible for the robot to move back and
forth between complex unpredictable and simple predicted situations, so it is not necessary
to implement the approaches of homeokinesis and IAC. Still, it would be very interesting to
investigate these approaches in further research, especially since they could combine very well
with the SLM1. Besides the method of maximising the learning progress, the even simpler
approaches of maximising and minimising the prediction error were investigated for compar-
ison.

In all chosen control techniques, there is a probability of choosing a random control action.
This prevents the robot from choosing the same action over and over again, while a different
action might actually give a higher reward. Furthermore, when a control action has been
chosen, it is repeated for 5 timesteps, to prevent the robot from switching between speeds
too fast. The controller looks 50 timesteps in the past to determine the control of the current
timestep, by choosing the control of the timestep that resulted in maximum reward, together
with some small white Gaussian noise to further stimulate exploration of new control values.

6-5 Experimental set-up and specifications

The mobile robot in the experiment is a Romo 1.0 equipped with an Android smartphone.
The robot communicates with a laptop with an 2.8 GHz processor via Wifi and a server.
Camera images are sent from smartphone to laptop, and the control commands are sent from
laptop to smartphone, all via a server and using the message system ØMQ2. The smartphone
then sends the control commands to the robot via an audio signal. This has been developed
by DO bots3.

Although the robot can send 640×480 JPEG images to the computer, these images are scaled
down to 16×16 pixels to decrease computation time and memory usage. The robot can move

1The approaches of homeokinesis and IAC require inverse properties of the predictor or a partition of the
predictor in several experts. Since the SLM uses linear models, inverse properties could be analysed more
easily than for other black-box models. Furthermore, the combination of the linear models is done in such
a way that each model can be seen as an expert for a specific range of situations that is determined by the
Gaussian function, which is what is needed for the IAC approach. Further research is necessary to see how
the SLM combines with the approaches of homeokinesis or IAC.

2See www.zeromq.org.
3See www.dobots.nl.

Laurens Bliek Master of Science Thesis

www.zeromq.org
www.dobots.nl

6-6 Model specifications 61

forward and backward and can take turns, but the control is limited to one dimension to
make the experiment simpler: the robot is limited to rotating left or right at different speeds,
with speed 0 equal to standing still. Images and controls are received and sent to the robot
at a frequency of 2 Hz.

The robot is put in a box with images on the inside, and the relation between actuator
and sensor data is to be learned for the situation that the robot rotates at different speeds
and directions inside the box. To test the chosen techniques for more than one situation, a
fish-eye lens is equipped to the smartphone camera to provide a 360◦ view. The experiment
is conducted both with and without a fish-eye lens. The set-up for both cases is shown in
Figures 6-4 and 6-5.

Figure 6-4: Experimental set-up. The
robot is equipped with a smartphone and
has to learn the relation between actuator
and sensor data by rotating and looking at
pictures inside a box.

Figure 6-5: Using a fish-eye lens to give
the robot a 360◦ view.

6-6 Model specifications

The SLM model is used (see previous section and Chapter 4) with a number of ñ = 50 local
models. Though a larger number of local models would give a more accurate model, it would
also require more computational power, so this number was chosen to give decent accuracy

Master of Science Thesis Laurens Bliek

62 Experiments

while not requiring too much computational power4. The parameters βk are drawn from a
uniform distribution over (0.45, 0.55), while parameters γk are drawn from a uniform distibu-
tion with different ranges depending on the dimension. For the dimensions corresponding with
the previous image yt−1, the elements of γk were drawn from a (0, 1) uniform distribution,
and for the dimension corresponding with the previous control ut−1, this element of γk was
drawn from a (−1, 1) uniform distribution. The reason for this is that the images consisted
of pixel brightness values scaled to (0, 1), and the control was a value scaled to (−1, 1), where
u = −1 corresponded with rotating left at full speed, and u = 1 with rotating right at full
speed, and u = 0 with standing still. So there actually is some prior knowledge available to
the robot: the range of its input values.

In the calculation of the construction matrix K from Section 3-4-3 and from Equation (4-12),
that is, when calculating the outputs of the radial basis functions, one problem has to be
solved. Since the dimension n of the image data yt−1 is much higher than the dimension m of
the previous control ut−1, the Gaussians could be dominated by the images, while the control
would have no significant effect on the model. To prevent this, the image data has been scaled
by a factor c that controls the importance of image data compared to the control. This has
been done only when calculating the output of the Gaussian functions, not in the local models
themselves. Since the Euclidean norm ||ϕ−γk|| is used as an input to the Gaussian functions,
the value of c for which image and control data are equally important is c = 2

√
m/n, where

the factor 2 comes from the different input ranges for image and control data.

Ideally, learning should be done online. But this would require the computation of a pseudo-
inverse at every timestep, which is not possible at the required speed and with the dimensions
used. But offline learning is also not possible, since the controller requires a prediction error
so that it can maximise its reward. Therefore, learning has been done in phases: after several
timesteps, the robot is stopped and learning takes place using all past data, then the robot
starts moving again without learning. The number of timesteps between learning phases is
25, and the final learning phase determines the final parameters of the learned model.

6-7 Testing

Only one of the subquestions of this thesis has not been answered yet: How can we test
whether an agent has learnt the relation between actuator and sensor data? This
chapter described which techniques will be used to predict the next sensor data given the
current sensor and actuator data. It was also described which techniques will be used for the
controller to aid in this process. Assuming the techniques work correctly, this will result in a
model that can predict the next sensor data correctly. What is left is some means to test the
quality of the model, and of the techniques that resulted in the model. These will be tested
on various fronts:

• Pre-learning total error: the total error was defined in Section 3-1. Using the model
parameters from each timestep, the error is computed at each timestep.

4In fact, this thesis provided an upper bound for the number of models necessary to give a good approxi-
mation. Using this upper bound would require too much computational power, so this theoretical result is not
used in the experiment.

Laurens Bliek Master of Science Thesis

6-8 Results 63

• Post-learning total error: after the last learning phase, the optimal parameters have
been computed. Using these parameters, the total error is recomputed for each timestep
to see the performance with the new parameters if the robot would be in the exact same
situations it has already encountered. This can be compared with the pre-learning total
error to see how much the agent has learned during the experiment.

• Change detection: after the last learning phase, a part of the environment will be
changed. It is checked whether the error of the robot will be higher in this situation.

• External influence detection: after the last learning phase, the robot control will
be changed in such a way that the real movement of the robot does not correspond
with the control values it receives. It is checked whether the error of the robot in this
situation will be higher.

• Interpretability: most models discussed in this thesis are black-box models, that
require no prior knowledge but also are hard to interpret. However, the SLM that is
used, does have a physical interpretation. It will be checked whether the learned model
has a logical physical explanation.

Together with the results from the next section, this should answer the last subquestion of
this thesis.

6-8 Results

6-8-1 Error and chosen control actions

Table 6-2: Results of one run of the three tested controllers for one simulation: minimise
prediction error, maximise prediction error, and maximise learning progress.

Chosen controller Pre-learning error Post-learning error
Minimise prediction error 20.0759 1.4611
Maximise prediction error 24.1857 4.6256
Maximise learning progress 19.6401 3.5219

Table 6-2 shows the total error of one run for each of the three tested controllers. The errors
of each timestep have been divided by the input dimension before they were summed over
each timestep. A large difference can be seen between the total error before learning, and the
total error after the last learning phase. This means that, if the robot would encounter the
exact same situation after learning, it would predict its sensor data better than when it first
encountered that situation.

Since these results are only from one run, no precise conclusions can be drawn. Still, the
different controllers can be compared by looking at Figure 6-6. In this figure, both the chosen
control actions and the prediction error have been displayed. As explained in Chapter 5, the
method of minimising the prediction error resulted mostly in the trivial action of standing
still, with some other control actions chosen randomly with a certain probability, and this

Master of Science Thesis Laurens Bliek

64 Experiments

happened for most of the simulations. It can also be seen that the error was often lower than
for the other controllers.

The controllers where the prediction error or the learning progress was maximised, showed
exploratory behaviour, as explained in Chapter 5. Although the controllers could get ‘stuck’
on one chosen control action, because this action gave the highest reward, there is still a
diversity in the chosen control actions. This diversity occurred in most of the simulations,
though not in all of them. This disadvantage was already explained in Chapter 5 and could
be solved by choosing a more complex type of controller like the IAC method explained in
Section 5-3-6.

Figure 6-6 shows that the model could give a low error for some situations with all three
controllers, but not for every situation. Probably more training data would be required, since
500 timesteps is not really that much, and the training data was also not that ‘clean’ (robot
moving a bit from its place or against walls, communication problems, changes in lighting,
moving objects, etc.). Still, the accuracy of the model with only a small amount of noisy data
is remarkable.

Laurens Bliek Master of Science Thesis

6-8 Results 65

0 50 100 150 200 250 300 350 400 450 500

−10

−5

0

Timestep t

Er
ro
r

lo
gε

t,
C
on

tr
ol
u
t

(a)

0 50 100 150 200 250 300 350 400 450 500

−10

−5

0

Timestep t

Er
ro
r

lo
gε

t,
C
on

tr
ol
u
t

(b)

0 50 100 150 200 250 300 350 400 450 500

−10

−5

0

Timestep t

Er
ro
r

lo
gε

t,
C
on

tr
ol
u
t

(c)

Figure 6-6: Results of one run of the three tested control strategies: (a) minimise prediction
error, (b) maximise prediction error, and (c) maximise learning progress. The blue dots represent
the chosen control at timestep t, with the black lines showing the intervals [−1, 0] and [0, 1]. The
red graph shows the logarithm of the prediction error at timestep t before the learning algorithm
included that timestep, while the green graph shows the logarithm of the prediction error at
timestep t using the learned parameters from the last timestep.

Master of Science Thesis Laurens Bliek

66 Experiments

6-8-2 Change detection

To further show the accuracy of the learned model, and to test the practical use of it, another
experiment has been done using the model learned during the experiment that was explained
in this chapter. With the final parameters following from the last learning phase, it was
checked whether a change in the robot’s environment could be detected. One of the pictures
in the environment of the robot was removed to introduce a different picture. Then the robot
was put in the box, and the control actions were chosen such that the robot rotated in one
direction at a constant speed, while still predicting the next sensor data but without learning.
After the change in the environment was seen three times, this experiment was terminated.
Figure 6-7 shows the prediction error during the experiment, with the timesteps where the
robot was looking at a changed part of the environment highlighted. These timesteps were
found manually.

Note that the fish-eye lens was not used in this experiment, since this would make the robot
see the changed part of the environment at every timestep, making it impossible to distinguish
between the prediction errors for unchanged and for changed parts of the environment.

The results of the approach where the prediction error is minimised, shown in Figure 6-7a, is
not very convincing. Other parts of the environment resulted in a higher error than the part
where the environment was changed. This is probably due to the fact that when learning,
the robot was standing still most of the time, so it has not really learned what happens in
most parts of the environment. The other two approaches, where the prediction error and the
learning progress were maximised, show more promising results (see Figures 6-7b and 6-7c).
Although some parts of the environment were apparently not fully learned due to the small
number of training samples when learning, the model still manages to give a distinguishing
higher error when the robot looks at a part of the environment that is different from what it
has learned.

The results of the experiment show that the robot and the chosen techniques can not really
be used directly in a practical application. The results are not satisfying enough for that.
But they do show that there is a lot of potential for further development. Detecting a change
in the environment, while the environment has been learned autonomously, could very much
be of practical use in, for example, robotic surveillance. This experiment showed that it is
possible to do so with the chosen techniques, at least for a simple experiment, but possibly
for more complex cases as well.

Laurens Bliek Master of Science Thesis

6-8 Results 67

500 520 540 560 580 600 620 640 660 680 7000

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Timestep t

Er
ro
r
ε t

(a)

500 520 540 560 580 600 620 640 660 680 7000

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Timestep t

Er
ro
r
ε t

(b)

500 510 520 530 540 550 560 570 580 590 600 610 6200

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Timestep t

Er
ro
r
ε t

(c)

Figure 6-7: Results of the change detection experiment for: (a) minimise prediction error, (b)
maximise prediction error, and (c) maximise learning progress. The graph shows the prediction
error during the whole experiment, with the red parts of the graph highlighting those timesteps
where the robot looked at a part of the environment that was different from the first experiment
where learning took place. In the change detection experiment, no learning took place.

Master of Science Thesis Laurens Bliek

68 Experiments

6-8-3 External influence detection

The goal of the third and last experiment was to see if the robot can detect a change in its
own dynamics, not in the environment. A similar goal is to distinguish between the robot’s
own actions and the actions of a different entity. The first idea was to let the robot rotate
and then hold it still manually at some timesteps. This would result in a difference between
the expected sensor data (different from last timestep due to expected moving) and the real
sensor data (same as last timestep due to standing still). Then it would be checked whether
the prediction error would be higher at those timesteps where the robot was meant to rotate
but could not because it was prevented to do so. Unfortunately, this experiment did not lead
to satisfying results. The reason for this is probably that the robot could not perfectly predict
changes in sensor data, and in these cases standing still lead to a result that is even easier to
predict than the sensor data resulting from the chosen control value.

After these negative results, the nature of the experiment was changed. Instead of holding
the robot manually, a different ‘virtual’ control value was given to externally influence the
robot not by hand, but by making use of the control mechanism. The robot was put in the
box and set to rotate at a constant speed. At a certain point, the control value used to control
the robot was reversed, making the robot rotate in the opposite direction. But at the same
time, the control value given to the predictor was not changed, causing a difference between
the expected movement and the real movement. The predictor would expect the sensor data
to be changed in the same way as before, while the sensor data actually changed in a different
way because of the change in the control value.

Figure 6-8 shows the results of this experiment for the normal lens. The results for the fish-eye
lens are shown in Figure 6-9. In both figures, the prediction error is plotted for each timestep,
with highlighted parts for those timesteps where the control is changed. As in the change
detection experiment, the case where the prediction error is minimised (Figure 6-9a) does
not show good results. It is expected that the prediction error is higher for the highlighted
parts, where the control value used by the model is different from the movement of the robot.
This is not the case, probably because not every situation has been learned by the robot in
this case, because the robot mainly stood still when learning. What is interesting is that the
results improve when the robot is equipped with a fish-eye lens, probably because the robot
could see its whole environment during learning, even if it mostly stood still.

The other two approaches, where the prediction error or the learning progress were maximised,
show a peak in the prediction error for those timesteps where the control values used by the
model are different from the movement of the robot. This is as expected, and even though
there are other situations where the error shows a peak, the results indicate that there is
potential to let the robot distinguish between its own actions and someone else’s. A potential
application for this would, again, be the setting of robotic surveillance. After learning its own
dynamics, the robot might be able to detect actions that were performed by other entities,
for example an intruder that opens a door. Automatically detecting such events can be of
great practical use.

Note that the results improve a lot when using the fish-eye lens. Where the results for the
standard lens also show peaks in the prediction error for other situations than the highlighted
parts of the graphs, the peaks for the fish-eye lens are more distinctive. One reason for this
is that the robot could see the whole environment all the time when using the fish-eye lens,

Laurens Bliek Master of Science Thesis

6-8 Results 69

making all situations more similar than when the standard lens was used. Another reason
is that the fish-eye lens gives a circular image with the whole environment in it. With only
16 × 16 pixels, this means that no details of the environment can be observed, and the part
of the image outside the circle is black. Sensor data contains less detailed information, so
changes in the dynamics have a large effect on the sensor data, whereas the sensor data for the
normal lens is more sensitive to changes in the environment. This shows that both lenses have
their own strengths and weaknesses, but more research is required to give more information
about the differences.

Master of Science Thesis Laurens Bliek

70 Experiments

500 520 540 560 580 600 620 640 660 680 700 720 7400

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

Timestep t

Er
ro
r
ε t

(a)

500 520 540 560 580 600 620 640 660 680 700 720 7400

5 · 10−2

0.1

Timestep t

Er
ro
r
ε t

(b)

500 520 540 560 580 600 620 640 660 680 700 720 7400

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Timestep t

Er
ro
r
ε t

(c)

Figure 6-8: Results of the external influence detection experiment for: (a) minimise prediction
error, (b) maximise prediction error, and (c) maximise learning progress. The graph shows the
prediction error during the whole experiment, with the red parts of the graph highlighting those
timesteps where the real movement of the robot was different from the control values given to
the model. In this experiment, no learning took place.

Laurens Bliek Master of Science Thesis

6-8 Results 71

500 520 540 560 580 600 620 640 660 680 700 720 7400

1 · 10−2

2 · 10−2

3 · 10−2

Timestep t

Er
ro
r
ε t

(a)

500 520 540 560 580 600 620 640 660 680 700 720 7400

1 · 10−2

2 · 10−2

3 · 10−2

Timestep t

Er
ro
r
ε t

(b)

500 520 540 560 580 600 620 640 660 680 700 720 7400

1 · 10−2

2 · 10−2

3 · 10−2

Timestep t

Er
ro
r
ε t

(c)

Figure 6-9: Results for the same experiment as in the previous figure, except that the robot was
equipped with a fish-eye lens here.

Master of Science Thesis Laurens Bliek

72 Experiments

6-8-4 Interpretability

One advantage of the used model, as explained in Section 3-3-2, is the interpretability: whereas
neural networks and other blackbox models do not give any insight into the model, but only
produce the desired output from a given input, the SLM that was used in these experiments
does have a physical interpretation. This is due to the parameters αk being a function of
the input, rather than a value independent of the input. Looking at the predictor function
f(ϕ) =

∑ñ
k=1 αkκ(ϕ, βk, γk) from Section 3-3, the function values κ(ϕ, βk, γk) represent the

validity of linear model k for input ϕ, while parameters of the linear model appear inside αk.

In Chapter 4 we saw that for each linear model k, the parameters αk can be represented by
an n× (l + 1) matrix λk. Since this matrix represents the parameters of a linear model, it is
expected that it contains information that is physically interpretable. For example, a linear
model that is most valid when the robot stands still, should have a matrix of parameters that
is similar to the identity matrix. The models that are most valid when the robot is rotating,
should have matrices similar to the one described in Equation (6-4).

Figure 6-10 shows the parameters of the linear models for three local models: one that is most
active when the robot stands still, one that is most active when the robot rotates left, and one
that is most active when the robot rotates right. We also zoomed in on the last image. Lighter
parts of the images represent higher values of the matrix elements. These kind of matrices
appeared most of the time for all tested controllers, although sometimes the matrices were
too vague to see the desired structure. Like in Equation (6-4), the matrices consist of dashed
diagonals, corresponding to the transformation that is done on the images. The reason that
the matrix corresponding to rotating right has diagonals below the main diagonal, while in
Equation (6-4) this was the case for rotating left, is the different matrix multiplication used
in the model (the matrix is used in a right multiplication, not a left multiplication).

When using the fish-eye lens described in Section 6-5, the resulting parameter matrices had
a different structure. One example, corresponding to the robot rotating left, can be found
in Figure 6-11. This shows that different types of transformations can be learned with the
chosen model.

The shown matrices correspond with some kind of knowledge of the relation between actuator
and sensor data. Depending on the actuator data and the sensor data, the relation can locally
be described by a linear model, resulting in a global model that is nonlinear. This gives an
answer to the main research question of this thesis: How can an autonomous physical
agent learn the relation between its actuator and sensor data?

Laurens Bliek Master of Science Thesis

6-8 Results 73

200 400 600

200

400

600

j = 1, . . . , n, n = 768

i
=

1,
..
.,
l
+

1,
l

=
76

9

(a) Parameters of λk, k = 22

200 400 600

200

400

600

j = 1, . . . , n, n = 768
i

=
1,
..
.,
l
+

1,
l

=
76

9

(b) Parameters of λk, k = 6

200 400 600

200

400

600

j = 1, . . . , n, n = 768

i
=

1,
..
.,
l
+

1,
l

=
76

9

(c) Parameters of λk, k = 41

180 200 220 240
180

200

220

240

j = 176, . . . , 256

i
=

17
7,
..
.,

25
4

(d) Zoomed part of (c).

Figure 6-10: Learned parameters of linear models αk(ϕ) = λ[ϕT 1]T corresponding to three
different situations: (a) stand still (22th local model), (b) rotate left (6th local model), and
(c) rotate right (41st local model). In (d), we zoomed in on the highlighted part of (c) so
that the matrix structure can be seen more clearly. The parameters are put in a matrix, where
each row corresponds to the input dimension +1 (the bottom row corresponds to the bias, the
one above to the one-dimensional motor space, and all the other rows correspond to one of the
16 × 16 × 3 pixels). Each column corresponds to the output dimension, which has dimension
16× 16× 3 = 768. The element of the matrix on position i, j corresponds to the linear relation
between input and output data for input dimension i and output dimension j. There were ñ of
these matrices, one for each linear model.

Master of Science Thesis Laurens Bliek

74 Experiments

180 200 220 240
180

200

220

240

j = 1, . . . , n, n = 768

i
=

1,
..
.,
l
+

1,
l

=
76

9

Figure 6-11: Learned parameters of λ17, which constitute a linear model for the situation that
the robot rotates left. Here, the robot was equipped with a fish-eye lens.

Laurens Bliek Master of Science Thesis

Chapter 7

Conclusion

There exist several techniques that can help an agent to learn the relation between its actuator
and sensor data autonomously. Several of these techniques were discussed. The chosen
technique is the Prediction Error Method, with a Local Linear Model as a predictor function.
The model uses some randomly initialised parameters, while the other parameters follow from
a linear least squares problem. The resulting model is a novel model that has been given the
name Shuffled Linear Model (SLM).

The SLM has many benefits. First of all, since efficient algorithms exist for linear regressoin,
parameter estimation can be done in a computationally efficient manner. Although some
parameters were chosen randomly, it was proved that the SLM can still act as a universal
approximator. The required number of models was shown to be less than the required number
of hidden neurons for similar algorithms. An interpretation of the parameters was also given,
something that can be quite hard for other so-called ‘black-box’ models.

Besides the theoretical results about the SLM, the model has been tested on a mobile robot,
equipped with a smartphone. The goal was to let the robot learn the relation between actuator
and sensor data. The SLM was used as a predictor, with the current sensor and actuator data
as input, and the sensor data of the next timestep as desired output. The robot was put in a
box with images and could rotate, in order to learn its own dynamics (in sensor space) and
the environment. When given enough training samples, the robot indeed learned a mapping
between input and output correctly, as could be seen from the parameters of the SLM and
from the result of the different tests.

Two practical tests were used to evaluate the use of the model. One was the test of change
detection: after fitting the model, one image of the box was replaced by a new image. It
turns out that the robot could ‘notice’ the change by giving a higher prediction error when
looking at the new image. The other test was to check external influences: the movement of
the robot was changed while keeping the same control value. This caused a difference between
the movement of the robot and the control value of the predictor, increasing the prediction
error in these situations. A result is that the robot could potentially learn the difference
between the effects of its own actions, and the effect of someone else’s actions.

Master of Science Thesis Laurens Bliek

76 Conclusion

Besides proposing a new type of model and using it as a predictor, one contribution of this
thesis was to combine this model with a controller that uses only internal information as
a reward. The controller that maximised intrinsic reward made sure that the agent would
autonomously explore those parts of its environment and sensorimotor space where it had
not yet learned correctly how to predict its sensor data. The combination of a powerful
prediction model and a controller that could provide exploratory agent behaviour, lead to an
agent learning its sensor dynamics and its environment autonomously. For robots with visual
sensors, this combination has not been analysed before.

Many suggestions remain for future research. The suggested model has been analysed in some
aspects, but many questions remain. For example, what is the role of normalisation in the
radial basis functions, and what is the relation to linearised models of nonlinear systems?
The control part of this thesis also has room for improvement: the used controller has both
drawbacks and solutions that were already mentioned in this thesis, and the approach of
Intelligent Adaptive Curiosity or the approach of Homeokinesis have not yet been combined
with the model proposed in this thesis. Both of these approaches could be well combined with
the SLM, since this model is a combination of several models and might also have properties
about the inverse relation between sensor and actuator data.

The practical part of this research also has a lot of room for improvement. The experiments
that were presented, were only simple ones, and the chosen techniques were not being used at
their full potential. To make a real practical application, there is a lot to be improved in, for
example, the data provided to the model and the implementation of the controller techniques.
And with different assumptions, for example one where the environment is dynamic, the model
would have to be changed.

The model predicts only one timestep in the future. This is limiting for practical applica-
tions, and multi-step prediction is another suggestion for future research. One could also
look at the results of combining the chosen techniques not just into one, but in multiple
agents. Distributed control or distributed sensing could then have a new topic for research.
Finally, combining the techniques used in this thesis, with different intrinsic rewards (like
empowerment), could lead to a robot that could truly learn to navigate in the real world.

Laurens Bliek Master of Science Thesis

Appendix A

Link between linear state-space and
input-output models

A linear time-invariant (LTI) system can be written in state-space form as:

Σ
{
xt+1 = Axt +But
ŷt = Cxt

. (A-1)

Analysis of discrete-time LTI systems is typically done by looking at the impulse response or
by looking at the system in the Z-transform domain. The impulse response ht of a system is
defined as the zero-state response of the system to input

ut = δt =
{
ut = 1, t = 0
ut = 0, t 6= 0 .

For the LTI system, this gives:

x0 = 0, ŷ0 = 0
x1 = Ax0 +Bδ0 = B, ŷ1 = Cx1 = CB

x2 = Ax1 +Bδ1 = AB, ŷ2 = Cx2 = CAB

x3 = Ax2 +Bδ2 = A2B, ŷ3 = Cx3 = CA2B

...
...

xt = At−1B, ht = ŷt = CAt−1B.

From the linearity and time-invariance of Σ, it follows that the impulse response ht = CAt−1B
is a complete characterization of the system: ŷt =

∑∞
k=1 hkut−k.

Master of Science Thesis Laurens Bliek

78 Link between linear state-space and input-output models

A common notation is the shift operator qut = ut+1 [8]. Using this notation, the system can
be written as:

ŷt =
∞∑
k=1

hkut−k

=
∞∑
k=1

hk(q−kut)

=
[∞∑
k=1

hkq
−k]ut (A-2)

= G(q)ut,

with G(q) =
∑∞
k=1 hkq

−k the transfer operator. Note that this description is an input-output
model, since there is no dependence of ŷ on the state, but only on the past inputs. Using this
notation, the system ŷt = G(q)ut can be generalised to systems of the following form:

A(q)yt = B(q)
F (q)ut + C(q)

D(q)εt, (A-3)

with ε = ŷ−y the prediction error. This form includes all of the linear models of Section 3-2-1
(FIR, ARX, and ARMAX) and the Box-Jenkins model (BJ) and Output-Error model (OE)
models, closing the gap between input-output models and state-space models.

The Z-transform is defined as: Z{xt} =
∑∞
t=−∞ xtz

−t = X(z). Using the linearity (Z{ax1t +
bx2t} = aX1(z) + bX2(z)) and time-shift (Z{xt+k} = zkX(z)) properties of the Z-transform,
the system Σ above can be transformed as follows:

zX(z) = AX(z) +BU(z) (A-4)
⇒ X(z) = (zI −A)−1BU(z), (A-5)

Ŷ (z) = CX(z) (A-6)
= C(zI −A)−1BU(z), (A-7)

where X, Ŷ , and U are Z-transforms of x, ŷ and u respectively. This is also similar to the
input-output models. Besides showing the connection between input-output and state-space
models, the impulse response and the Z-domain are not considered further in this thesis.

Laurens Bliek Master of Science Thesis

Appendix B

SLM questions

At the end of Chapter 4, some further research questions were posed. Two of them will be
answered in this appendix.

B-1 Shuffled Nonlinear Models

One question that arises from Chapter 4, is about the use of the linear model. Even around a
local operating point, it can be the case that a linear model does not correctly represent the
relation between inputs and outputs, so it might be better to look at local nonlinear models.
Can other models be used in the same way as the linear models in the SLM approach?

An answer to this question can be found when looking at the proof of the lemmas and theorems
of Section 4-4. Although it was proved that the model could be trained using linear regression,
nowhere in the proof was the linear relation between the local model outputs αk(ϕ) and the
regression vector ϕ used. What was used, was the linear relation between local model outputs
αk(ϕ) and its parameters.

For local model αk(ϕ) = µk(ϕ) + νk, let λk = [µk νk] and z(ϕ) = [ϕT 1]T . Then we can write
αk(ϕ, λk) = λkz(ϕ). In Equation (4-10), the linear relation between αk and λk was used to
show that the model can be trained using linear regression. But since the linear dependence
on ϕ was not used anywhere, we have the following conjecture:

Corollary 2. Theorem 2 holds for any function z(ϕ) : Rl → Rc, for some constant c ∈ N, if
the factor l + 1 in the theorem is changed to max(c, t).

Indeed, if any function z(ϕ) : Rl → Rc is chosen, the factor l + 1 should be changed to c in
all the proofs of Section 4-4. The proofs should then still be valid, unless c ≥ t is chosen,
because there has to be at least 1 model.

An example of a different local model that could be used is the bilinear model from Section 3-
2-2. In this case, z(ϕ) = [(ϕ ⊗ ϕ)T ϕT 1]T , and c = l2 + l + 1. The non-fixed parameters λ

Master of Science Thesis Laurens Bliek

80 SLM questions

consist of matrices for the constant, linear and bilinear part, which have 1, l, and l2 columns
respectively. The matrix K from the SLM algorithm is then a t× (l2 + l + 1)ñ-matrix. This
should further decrease the required number of models. This does not necessarily mean that
local models with higher order are always better, since the condition for Theorem 2 should
still hold. This condition states that the matrix Z = [z1 . . . zt]T should have full rank.

However, it is reasonable to assume that less models are needed if the local models are more
complex. Indeed, if c = t, then one local model should suffice for achieving zero error with
all t datapoints.

One interesting result is that, since SLM models themselves are also linear in their parameters,
they can also be used as a local model, adding a recursive aspect to the theory. This recursive
SLM could have some kind of hierarchical structure, making it more related to deep learning
algorithms [50]. A recursive SLM could be defined as follows:

SLM(ϕ) =
ñ∑
k=1

κk(ϕ)(µkϕ+ νk) =
ñ∑
k=1

κk(ϕ)λkz(ϕ), (B-1)

recSLM(ϕ) =
ñ∑
k=1

κk(ϕ)SLM(ϕ). (B-2)

If this recursion is repeated Q times, the result is a model of the form

recQSLM(ϕ) =
ñ∑
k=1

κk(ϕ)
ñ(2)∑
k(2)=1

κk(2)(ϕ) · · ·
ñ(Q)∑
k(Q)=1

κk(2)(ϕ)λk,k(2),...,k(Q)(µkϕ+ νk)

=
ñ∑
k=1

κk(ϕ)λ̃kz(ϕ), (B-3)

with

λ̃k = [λk,1,1,...,1 . . . λk,ñ(2),ñ(3),...,ñ(Q)], (B-4)
z(ϕ) = [κ1(ϕ) . . . κ1(ϕ)[ϕT 1]T . . . κñ(2)(ϕ) . . . κñ(Q)(ϕ)[ϕT 1]T]. (B-5)

In this case, λ̃k is an n × (
∏Q
i=2 ñ

(i))-matrix, giving a total of n × ñ
∏Q
i=2 ñ

(i) parameters.
Linear regression can still be applied, since the model has the same form as the SLM. But it
might also be possible to find more efficient learning algorithms for this model, if the recursive
aspect is somehow exploited.

More research is required to investigate all these claims.

B-2 SLM kernel

One suggestion for further research could be the link between SLMs and kernel methods. A
kernel is defined as a function k : Rl × Rl → R, and is usually interpreted as a measure of
similarity between two datapoints. These measures can be used, among others, to classify or
cluster datapoints, or to extract features from high-dimensional data.

Laurens Bliek Master of Science Thesis

B-2 SLM kernel 81

Two popular kernels are the linear kernel k(ϕ1, ϕ2) = ϕT1 ϕ2 and the Gaussian kernel k(ϕ1, ϕ2) =
e−b||ϕ1−ϕ2||2 . The basis functions from Section 3-3 can also be used as a kernel. For basis
function κ, the kernel can be defined as k(ϕ1, ϕ2) = 1

ñκ(ϕ1)κ(ϕ2), where ñ is the number of
basis functions. These kind of kernels have been analysed for neural networks with a sigmoid
activation function, and for RBF networks [51].

In this section it will be shown that the SLM can also be used as a kernel, and that under
some conditions, the result is equivalent to the composite kernel

k(ϕ1, ϕ2) = (ϕT1 ϕ2 + 1)e−b||ϕ1−ϕ2||2 .

This will be called the local linear kernel in this section.

Recall the function SLM(ϕ) =
∑ñ
k=1 κk(ϕ)(µkϕ+ νk), with κk(ϕ) = e−βk||ϕ−γk||

2 . In the
proof of Lemma 1, it was shown that this can be written as a basis function expansion:

SLM(ϕ) =
ñ∑
k=1

λkκk(ϕ)z(ϕ), (B-6)

with λk = [µk νk] and z(ϕ) = [ϕT 1]T . If the vector ϕ ∈ Rl is extended with a fixed element
ϕ(l+1) = 1, this can be denoted as:

SLM(ϕ) =
ñ∑
k=1

l+1∑
j=1

λ
(j)
k κk(ϕ)ϕ(j), (B-7)

where (j) denotes the j-th element of a vector, or the j-th column of a matrix. Since the
parameters λ(j)

k correspond to the basis coefficients, which can be seen as output weights of
the model, the term

∑l+1
j=1 κk(ϕ)ϕ(j) can be seen as a new basis function. The proposed SLM

kernel then takes the form: k(ϕ1, ϕ2) =
∑l+1
j=1 κk(ϕ1)ϕ(j)

1 κk(ϕ2)ϕ(j)
2 .

Since κk(ϕ) depends on randomly chosen parameters, the function values k(ϕ1, ϕ2) can be
seen as random variables. For k(ϕ1, ϕ2) = κk(ϕ1)κk(ϕ2), it has already been shown [51] that
the expectation is equal to the RBF kernel under some assumptions1. This result can be
generalised to the SLM kernel. Under the same assumptions as those of the RBF kernel, let
f(γ) = 1

(2πσ2)l/2 e
− 1

2σ2 ||γ||2 be the probability distribution of parameters γk. As σ → ∞, we
have:

E[k(ϕ1, ϕ2)] =
∫
Rl

l+1∑
j=1

κ(ϕ1, β, γ)ϕ(j)
1 κ(ϕ2, β, γ)ϕ(j)

2 f(γ)dγ

=
l+1∑
j=1

ϕ
(j)
1 ϕ

(j)
2

∫
Rl
e−β||ϕ1−γ||2e−β||ϕ2−γ||2 1

(2πσ2)l/2
e−

1
2σ2 ||γ||2

=
l+1∑
j=1

ϕ
(j)
1 ϕ

(j)
2 e−β̃||ϕ1−ϕ2||2

= (ϕT1 ϕ2 + 1)e−β̃||ϕ1−ϕ2||2 , (B-8)
1The parameters γk are assumed to be normally distributed with zero mean, and the result holds as the

variance tends to infinity. The distribution of the parameters βk is not taken into account.

Master of Science Thesis Laurens Bliek

82 SLM questions

where the results for the RBF kernel have been used in the third step. So the proposed local
linear kernel is k(ϕ1, ϕ2) = (ϕT1 ϕ2 + 1)e−β̃||ϕ1−ϕ2||2 .

This result not only opens the way for the SLM to be used for problems like classification,
clustering and dimension reduction, where many different kernel methods exist. It also leads
to a new interpretation of the SLM. The SLM can be seen as a Monte Carlo approximation of
the local linear kernel. Instead of using the whole continuous distribution of the weights γk, a
finite number of Monte-Carlo samples are taken from this distribution. Another interpretation
is that the SLM is an approximation in primal space of a kernel method using the local linear
kernel. Many kernel methods look at the dual version of the same problem. Similar insights
have been obtained recently for recurrent networks and recurrent kernels [52].

Laurens Bliek Master of Science Thesis

Bibliography

[1] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan, “An internal model for sensorimotor
integration,” Science, vol. 269, pp. 1880–1882, 1995.

[2] S. S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall Englewood
Cliffs, NJ, 2007.

[3] K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical systems by continuous
time recurrent neural networks,” Neural networks, vol. 6, no. 6, pp. 801–806, 1993.

[4] R. R. Mohler, Bilinear Control Processes: With Applications to Engineering, Ecology
and Medicine. Academic Press, Inc., 1973.

[5] I. Leontaritis and S. A. Billings, “Input-output parametric models for non-linear systems
part i: deterministic non-linear systems,” International journal of control, vol. 41, no. 2,
pp. 303–328, 1985.

[6] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjalmars-
son, and A. Juditsky, “Nonlinear black-box modeling in system identification: a unified
overview,” Automatica, vol. 31, no. 12, pp. 1691–1724, 1995.

[7] P. Van Overschee and B. De Moor, “Subspace identification for linear systems: theory,
implementation, applications,” status: published, 1996.

[8] L. Ljung, “System identification: theory for the user,” PTR Prentice Hall, Upper Saddle
River, NJ, 1999.

[9] L. Ljung, “Prediction error estimation methods,” Circuits, Systems and Signal Process-
ing, vol. 21, no. 1, pp. 11–21, 2002.

[10] L. Ljung, “Perspectives on system identification,” Annual Reviews in Control, vol. 34,
no. 1, pp. 1–12, 2010.

[11] A. Censi and R. M. Murray, “Bootstrapping bilinear models of robotic sensorimotor
cascades,” in Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pp. 4318–4325, IEEE, 2011.

Master of Science Thesis Laurens Bliek

84 Bibliography

[12] V. Verdult, Non linear system identification: a state-space approach. Twente University
Press, 2002.

[13] S. Billings and S. Fakhouri, “Identification of a class of nonlinear systems using corre-
lation analysis,” Electrical Engineers, Proceedings of the Institution of, vol. 125, no. 7,
pp. 691–697, 1978.

[14] K. Narendra and P. Gallman, “An iterative method for the identification of nonlinear
systems using a hammerstein model,” Automatic Control, IEEE Transactions on, vol. 11,
no. 3, pp. 546–550, 1966.

[15] E.-W. Bai, “A blind approach to the hammerstein–wiener model identification,” Auto-
matica, vol. 38, no. 6, pp. 967–979, 2002.

[16] A. F. Atiya and A. G. Parlos, “New results on recurrent network training: Unifying
the algorithms and accelerating convergence,” Neural Networks, IEEE Transactions on,
vol. 11, no. 3, pp. 697–709, 2000.

[17] M. Lukoševičius and H. Jaeger, “Survey: Reservoir computing approaches to recurrent
neural network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[18] J. Stark, D. Broomhead, M. Davies, and J. Huke, “Takens embedding theorems for forced
and stochastic systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 30,
no. 9, pp. 5303–5314, 1997.

[19] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[20] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function net-
works,” Neural computation, vol. 3, no. 2, pp. 246–257, 1991.

[21] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to model-
ing and control,” Systems, Man and Cybernetics, IEEE Transactions on, no. 1, pp. 116–
132, 1985.

[22] J.-S. Jang and C.-T. Sun, “Functional equivalence between radial basis function networks
and fuzzy inference systems,” Neural Networks, IEEE Transactions on, vol. 4, no. 1,
pp. 156–159, 1993.

[23] R. Battiti, “First-and second-order methods for learning: between steepest descent and
newton’s method,” Neural computation, vol. 4, no. 2, pp. 141–166, 1992.

[24] C. R. Rao and S. K. Mitra, “Generalized inverse of a matrix and its applications,” J.
Wiley, New York, 1971.

[25] T. Greville, “Some applications of the pseudoinverse of a matrix,” SIAM review, vol. 2,
no. 1, pp. 15–22, 1960.

[26] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and appli-
cations,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[27] Y. Miche, B. Schrauwen, and A. Lendasse, “Machine learning techniques based on ran-
dom projections.,” in ESANN, 2010.

Laurens Bliek Master of Science Thesis

85

[28] K. Neumann, C. Emmerich, and J. J. Steil, “Regularization by intrinsic plasticity and
its synergies with recurrence for random projection methods,” 2012.

[29] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using incremental
constructive feedforward networks with random hidden nodes,” Neural Networks, IEEE
Transactions on, vol. 17, no. 4, pp. 879–892, 2006.

[30] O. Nelles, Nonlinear system identification: from classical approaches to neural networks
and fuzzy models. Springer, 2001.

[31] G.-B. Huang and L. Chen, “Convex incremental extreme learning machine,” Neurocom-
puting, vol. 70, no. 16, pp. 3056–3062, 2007.

[32] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden neurons in
feedforward networks with arbitrary bounded nonlinear activation functions,” Neural
Networks, IEEE Transactions on, vol. 9, no. 1, pp. 224–229, 1998.

[33] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward neural network:
four layers versus three,” Neural Networks, IEEE Transactions on, vol. 8, no. 2, pp. 251–
255, 1997.

[34] S. A. Billings, H.-L. Wei, and M. A. Balikhin, “Generalized multiscale radial basis func-
tion networks,” Neural Networks, vol. 20, no. 10, pp. 1081–1094, 2007.

[35] F. Fernández-Navarro, C. Hervás-Martínez, J. Sanchez-Monedero, and P. A. Gutiérrez,
“Melm-grbf: a modified version of the extreme learning machine for generalized radial
basis function neural networks,” Neurocomputing, vol. 74, no. 16, pp. 2502–2510, 2011.

[36] K. J. Hunt, R. Haas, and R. Murray-Smith, “Extending the functional equivalence of
radial basis function networks and fuzzy inference systems,” Neural Networks, IEEE
Transactions on, vol. 7, no. 3, pp. 776–781, 1996.

[37] R. Murray-Smith and T. A. Johansen, “Multiple model approaches to nonlinear modeling
and control,” 1997.

[38] T. A. Johansen, R. Shorten, and R. Murray-Smith, “On the interpretation and identifi-
cation of dynamic takagi-sugeno fuzzy models,” Fuzzy Systems, IEEE Transactions on,
vol. 8, no. 3, pp. 297–313, 2000.

[39] G. Baudat and F. Anouar, “Kernel-based methods and function approximation,” in Neu-
ral Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on, vol. 2,
pp. 1244–1249, IEEE, 2001.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1. Cam-
bridge Univ Press, 1998.

[41] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a typology of computa-
tional approaches,” Frontiers in Neurorobotics, vol. 1, 2007.

[42] J. Tani, “Model-based learning for mobile robot navigation from the dynamical systems
perspective,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 26, no. 3, pp. 421–436, 1996.

Master of Science Thesis Laurens Bliek

86 Bibliography

[43] J. Tani, “Proposal of chaotic steepest descent method for neural networks and analysis
of their dynamics,” Electronics and Communications in Japan (Part III: Fundamental
Electronic Science), vol. 75, no. 4, pp. 62–70, 1992.

[44] R. Saegusa, G. Metta, G. Sandini, and S. Sakka, “Active motor babbling for sensori-
motor learning,” in Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International
Conference on, pp. 794–799, IEEE, 2009.

[45] J. Schmidhuber, “Adaptive confidence and adaptive curiosity,” Citeseer, 1991.

[46] J. Schmidhuber, “Curious model-building control systems,” in In Proc. International
Joint Conference on Neural Networks, Singapore, Citeseer, 1991.

[47] F. Kaplan and P.-Y. Oudeyer, “Maximizing learning progress: an internal reward system
for development,” in Embodied artificial intelligence, pp. 259–270, Springer, 2004.

[48] R. Der and G. Martius, The Playful Machine: Theoretical Foundation and Practical
Realization of Self-Organizing Robots, vol. 15. Springer-Verlag Berlin Heidelberg, 2012.

[49] P.-Y. Oudeyer, “Intelligent adaptive curiosity: a source of self-development,” 2004.

[50] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning-a new frontier in
artificial intelligence research [research frontier],” Computational Intelligence Magazine,
IEEE, vol. 5, no. 4, pp. 13–18, 2010.

[51] C. K. Williams, “Computation with infinite neural networks,” Neural Computation,
vol. 10, no. 5, pp. 1203–1216, 1998.

[52] M. Hermans and B. Schrauwen, “Recurrent kernel machines: Computing with infinite
echo state networks,” Neural Computation, vol. 24, no. 1, pp. 104–133, 2012.

Laurens Bliek Master of Science Thesis

Glossary

List of Acronyms

DoF degrees of freedom

PEM Prediction Error Method

SIM Subspace Identification Method

NFIR Nonlinear Finite Impulse-Response model

FIR Finite Impulse-Response model

NARX Nonlinear AutoRegressive eXogenous model

ARX AutoRegressive eXogenous model

NARMAX Nonlinear AutoRegressive Moving Average model with eXogenous input

ARMAX AutoRegressive Moving Average model with eXogenous input

LTI linear time-invariant

BJ Box-Jenkins model

OE Output-Error model

RNN Recurrent Neural Network

LLM Local Linear model

ELM Extreme Learning Machine

RC Reservoir Computing

RPM Random Projection Method

RBF Radial Basis Function

IAC Intelligent Adaptive Curiosity

Master of Science Thesis Laurens Bliek

88 Glossary

SLM Shuffled Linear Model

TSM Takagi-Sugeno Model

List of Symbols

αk Basis function coefficients (αk ∈ Rn).
βk Dilation parameters (βk ∈ Rl or βk ∈ R).
γk Translation parameters (γk ∈ Rl or γk ∈ R).
κ Mother function (κ : Rl → R). Can also be seen as a kernel.
ϕ Regression vector: the past data that is used to predict the future output data

(ϕ ∈ Rl)
θ Parameters of the predictor function (θ ∈ Θ). θ consists of parameters α, β and

γ.

ε Prediction error, or difference between predicted and measured output (ε ∈ Rn)
ŷ Predicted or estimated output (ŷ ∈ Rn)
LP Learning progress, or decrease in prediction error.
ñ Model order: number of basis functions in the model.
TLE Time-loop error or reconstruction error: the difference between the regressor

and the output of the inverse of the predictor function.
E Total error, for example the sum of squared prediction errors (E ∈ R)
f Predictor function (f : Rl → Rn)
g State transition function of a state-space model
h Output function of a state-space model
U Set of possible control values (U ⊆ Rm).
u Input, or actuator data (u ∈ Rm). Also called control value.
x State of the system
y Output, or sensor data (y ∈ Rn)

Laurens Bliek Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements

	Main Matter
	Introduction
	Research questions
	Type of agents considered
	Outline of this thesis

	Problem description
	Theory
	Practice

	System Identification
	Prediction error method
	Choosing the regression vector
	Input-output models
	State-space models
	Input-output versus state-space models

	Choosing the predictor function
	Ridge construction
	Radial construction
	Tensor products

	Finding the optimal parameters
	Nonlinear least squares
	Problems with recursion
	Linear least squares

	Regularisation

	Shuffled Linear Model
	Introduction
	ELM summary
	Proposed model
	Universal approximation with SLM
	Necessary lemmas
	Improvement of SLM as an extension of ELM
	Proposed algorithm

	Interpretation of the model
	ELM interpretation
	RBF interpretation
	Fuzzy interpretation
	LLM interpretation

	Further research

	Control for System Identification
	Intrinsic motivation
	Exploration versus exploitation trade-off
	Methods using intrinsic motivation
	Random movement
	Minimise prediction error
	Maximise prediction error
	Homeokinesis
	Maximise learning progress
	Intelligent Adaptive Curiosity

	Optimising with future data

	Experiments
	State-space dynamics
	Sensor space dynamics
	Choice of predictor
	Choice of regression vector
	Choice of predictor function
	Choice of parameters

	Choice of control
	Experimental set-up and specifications
	Model specifications
	Testing
	Results
	Error and chosen control actions
	Change detection
	External influence detection
	Interpretability

	Conclusion

	Appendices
	Link between linear state-space and input-output models
	SLM questions
	Shuffled Nonlinear Models
	SLM kernel

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

