
Configuration of Ambient
Environments by speech

Master Thesis

Nanne Wielinga

Department of Mathematics and Computer Science
Software Engineering and Technology Research Group

Advisor:
Prof. Mark van den Brand

Tutor:
Ir. Anne van Rossum

Examination Committee:
Prof. Mark van den Brand

Dr. Tanir Özçelebi
Dr.Ir. Ion Barosan

Ir. Anne van Rossum

Final

Eindhoven, May 2018

Abstract

We create a voice interface for a configurational language for ambient environment. Privacy issues
are currently a barricade for reaching the ideal ambient intelligence, as people will have to be
fully monitored in order to discover their ideally ambient environment. Our solution focuses
on empowering users to manually configure their own living environment. By providing a voice
interface, users can interactively discover the rules in their environment and change them into the
wished behavior.

In a broader perspective, we attempt to create a speech interface for editing a program ori-
ginating from a domain specific language. A speech interface consists of conversation between the
user and the system, which results in an interactive editing experience. Our work is by far not
complete enough for realistic usage and there are still several technical challenges such as, there
too many variations of sentences that users can speak and many of those variations are currently
not accepted. Furthermore, we do not provide a full editor and the expressiveness is limited.
Despite these limitations, we do provide a working prototype where a home environment can be
configured.

ii Configuration of Ambient Environments by speech

Acknowledgements

First of all, I would like to thank my supervisor Mark van den Brand, who luckily was patient
enough to keep supporting me and guiding me with the topics I was interested in. His advice,
encouragement, and wisdom especially helped me through this difficult process.

I would also express my thanks to my tutor Anne van Rossum, who leads Crownstone B.V.
and has experience with Internet of Things and ambient environments. His perspective and know-
ledge helped me shaping my work. Thanks to the colleagues in Crownstone for a great working
environment and much fun during the lunch time.

Furthermore, I want to express my gratitude to dr. Ana-Maria Sutii, who especially helped me
with my seminar and the period leading to my graduation project. My dear friends, Leroy van
Zeeland and Mathijs van der Worm who provided feedback and support. Besides, I would like
to thank my examination committee members: Prof. Mark van den Brand, Dr. Tanir Özçelebi,
Dr.Ir. Ion Barosan, and Ir. Anne van Rossum.

I would especially like to thank my family. My fiancée, Wei Zhang has been extremely sup-
portive of me throughout my entire study and helped me to get to this point. My parents, who
always supported and believed in me. My sister, Hester Wielinga who supported me by listening
to me. Without their support, I would not have succeeded.

Configuration of Ambient Environments by speech iii

Contents

Contents iv

List of Figures vi

List of Abbreviations vii

1 Introduction 1
1.1 Stakeholder . 2
1.2 Research questions . 2
1.3 Contributions . 2
1.4 Thesis organization . 2

2 Background and related work 4
2.1 Ambient environments . 4

2.1.1 Examples . 5
2.1.2 Applying in practice . 5
2.1.3 Interaction between home automation and user 5
2.1.4 Privacy issues . 6

2.2 Voice Assistants . 6
2.2.1 Definitions and vocabulary . 6
2.2.2 Development of voice assistants . 7
2.2.3 Extendability . 8
2.2.4 Human aspects of voice interfaces . 8
2.2.5 Comparison of voice assistants . 9
2.2.6 Voice assistants and smart homes . 10

2.3 Model-driven engineering . 10
2.3.1 Modeling languages . 11
2.3.2 Four-layered architecture of modeling . 11
2.3.3 Domain Specific Languages . 12
2.3.4 Language workbenches . 12
2.3.5 Editors . 13

2.4 Related work . 14
2.4.1 Controlling environments with natural language interfaces 14
2.4.2 Projects or work related to configuring ambient environments 15
2.4.3 Comparison between IFTTT and Eclipse Smart Home 16

2.5 Discussion . 16

3 Requirement analysis 18
3.1 Rationale . 18
3.2 Stakeholder . 18
3.3 Use cases . 19
3.4 Observations from home automation platforms . 20
3.5 Scope . 21

iv Configuration of Ambient Environments by speech

CONTENTS

3.6 Requirements . 21
3.7 Design decisions . 23

3.7.1 Configurational language . 23
3.7.2 Speech Interface . 23

3.8 Discussion . 23

4 Design 25
4.1 Smart Home, the Ambient Environment . 26

4.1.1 Home . 26
4.1.2 Actuators . 26
4.1.3 Conditions . 27
4.1.4 Recipes . 28

4.2 Voice Interface . 28
4.2.1 Creating the voice interface . 28
4.2.2 Handing requests from Alexa . 29

4.3 Configurational Language . 30
4.4 Evaluation and semantics . 32

4.4.1 Evaluation . 32
4.4.2 Semantics . 32

5 Results 34
5.1 Deliverables . 34

5.1.1 User Guide . 34
5.1.2 Voice Interface . 34
5.1.3 Configurational language . 35
5.1.4 Web application . 35

5.2 Discussion . 36
5.2.1 Technical Challenges . 36
5.2.2 Verification of requirements . 37

6 Conclusions 39
6.1 Contributions . 39
6.2 Future work . 39

Bibliography 41

Appendix 44

A Intents and Utterances 45
A.1 Recipes . 46

B User guide 48

Configuration of Ambient Environments by speech v

List of Figures

2.1 Ambient Intelligence Examples . 5
2.2 Four-layered architecture of modeling . 12
2.3 Example of an ontology diagrammed as the class hierarchy diagram from [29] . . . 16

4.1 Conceptual architecture . 25
4.2 Floor plan ambient environment . 27
4.3 Top-level classes . 30
4.4 Condition classes . 31
4.5 Action classes . 32

5.1 Screenshot of the Blockly editor . 35
5.2 Screenshot of prototype . 36

vi Configuration of Ambient Environments by speech

List of Abbreviations

AmI Ambient Intelligence. 4, 5

CASE Computer-Aided Software Engineering. 13

DSL Domain Specific Language. 12, 14, 21

EMF Eclipse Modeling Framework. 11

GPL General Purpose Language. 12, 14

HTML Hypertext Markup Language. 12

IFTTT If This Then That. 20

IoT Internet of Things. 2

MDA Model-Driven Architecture. 11

MDE Model-driven Engineering. 11

MDSE Model-driven Software Engineering. 11

MOF Meta-Object Facility. 11

MPS Meta Programming System. 13, 14

OMG Object Management Group. 11

SQL Structured Query Language. 12

UML Unified Modeling Language. 11

Configuration of Ambient Environments by speech vii

Chapter 1

Introduction

As the cost of integrated circuits is decreasing, homes and offices start adopting more connected
electronics such as lightning, heating, speakers, cameras, fridges, and others. The vision of Ambient
Intelligence imagines that these electronics adapt to the user, such that the electronic environment
is sensitive and responsive to the user in order to improve people’s lives. However, due to privacy
issues [12], which we explain in Section 2.1.4, there is currently a barricade for reaching the ideal
Ambient Intelligence as the environment cannot adapt to the user without adequate data.

In spite of privacy issues, we still want to create an environment that improves the lives of
people. Consequently, we choose to focus on empowering users to manually configure their own
living environment. With this method, users can decide themselves which personal information
they link and they can choose in which manner the environment adapts to their behavior. In order
for humans to use such a configuration system, it is essential that the system is accessible and
therefore has a low learning curve.

To build an accessible solution, we focus on creating a configuration language for ambient
environments that is configured the voice interfaces. With the recent advancements in speech
recognition and text-to-speech, it becomes possible to create more advanced voice interfaces. Suc-
cessful voice assistants such as Apple Siri show that speech interfaces can be user friendly, as users
can perform various tasks such as playing music, setting timers, perform knowledge retrieval, do
arithmetic, finding sports results, etcetera. Commercial voice assistants such as Google Home
and Amazon Alexa provide developers the possibility to extend upon the skillset of their voice
assistants.

The configurational language, that configures these ambient environments, consists of computer
instructions and can be seen as a domain-specific language. Domain-specific languages together
with model-driven engineering provide abstractions, protocols, standards, design patterns, and
tools for creating languages and models in a particular application domain. For ambient envir-
onments, it is useful when standards, abstractions, protocols, and especially implementations are
shared and commonly used. Environments can be more ambient when there is more compatib-
ility between different electronic devices and control systems. A provider of such standards and
implementations is Eclipse SmartHome, which is a open-source framework that together with the
automation software of OpenHAB provide more than 200 different technologies [41].

In this thesis, we design a configurational language together with a voice interface that can
configure ambient environments. Furthermore, we implement the designed language and voice
interface as a prototype in order to try to proof the concept. Besides designing and implementing,
we make an attempt to answer the research questions that arise from creating voice interfaces and
domain specific language.

Configuration of Ambient Environments by speech 1

CHAPTER 1. INTRODUCTION

1.1 Stakeholder

The main stakeholder of this thesis is Crownstone B.V., which shares our research interest into
configuration of ambient environments. Crownstone B.V. is the creator of the ‘Crownstone’, which
is a bluetooth connected smart home device. The Crownstone provides a power switch and power
dimmer for electronic appliances. Their smart phone application allows manual switching, sched-
uled switching, power consumption measuring, switching by presence, and indoor positioning [13].
Crownstone B.V. is in the process of implementing smart home functionality in several voice as-
sistants [54][53] and has an interest in configuration by voice as well. We interviewed Anne van
Rossum, who is leads Crownstone B.V. and has experience with Internet of Things (IoT) and
ambient environments. With his insights we constructed requirements for a prototype.

1.2 Research questions

As we want users to configure their own environments with a voice interface, there are two research
questions that arise.

RQ1:What would be a suitable domain specific language that controls ambient environments?

Firstly, we want to investigate solutions for the configuration of ambient environments. The
configurational language can be seen as a domain specific language, and which could benefit from
the research being done on domain specific languages. To answer this question, we look to other
solutions for configuring ambient environments. Furthermore, we provide background information
on domain specific languages.

RQ2:How does a voice interface for a domain specific language looks like?

Secondly, a hypothesis we have is that voice interfaces are user friendly for configuring ambi-
ent environments. We know that voice interfaces are easy for some tasks, but it is still unknown
how well voice interfaces perform for more complicated tasks such as configuring an ambient envir-
onment. We think that it depends on the voice interface itself. So how does a voice interface that
configures a configurational language looks like? And more general, how does a voice interface for
a domain specific language looks like?

To answer this question, we design and implement a voice interface and a domain specific lan-
guage for configuring ambient environments. Our findings from this design and implementation
address this research question.

1.3 Contributions

The primary contribution of this thesis is the Domain Specific Language together with the voice in-
terface, for configuration of Ambient Environments. Our proposed language is based on IFTTT [47]
and Eclipse SmartHome [18], and we adapted the language to have a voice interface. The voice
interface itself contains the ability to add, change, and remove rules from the configuration. As
well as having the possibility for the user to inspect certain behavior.

1.4 Thesis organization

In Chapter 2, we provide a background information of Ambient Environments, Voice Assistants,
Model-driven engineering, we present related work, and we provide a discussion of the topics.
Next, in Chapter 3 we provide an requirement analysis where we provide an overall motivation,
interview our stakeholder, provide use cases, present the requirements, provide some discussions,

2 Configuration of Ambient Environments by speech

CHAPTER 1. INTRODUCTION

and discuss our research questions. Afterwards, in Chapter 4 we present the architecture of our
voice interface and the configuration language, which we follow up with the design of an ambient
environment, the design of our voice interface, and the design and semantics of our configuration
language. Furthermore, in Chapter 5 we present our implementation of the prototype, we evaluate
our work, and discuss technical challenges that we have found. Finally, in Chapter 6 we conclude
our research with a summary of our contributions, a broader discussion about speech interfaces,
and suggestions of future work.

Configuration of Ambient Environments by speech 3

Chapter 2

Background and related work

In this chapter, we provide background information on Ambient Environments, Voice Assistants,
Model-Driven Engineering, related work, and a discussion of how these topics lead to our design.
In Section 2.1, we discuss Ambient intelligence as it has the same aim of improving human lives
by making the environments more intelligent. In Section 2.2, we discuss voice assistants as we
search for a platform to create a voice interface on. Furthermore, in Section 2.3 we introduce
background information on model driven engineering as it is beneficial for understanding domain
specific languages. Lastly in Section 2.4, we discuss related work and projects.

2.1 Ambient environments

We discuss Ambient Intelligence because this field has the same aim of improving human lives by
creating a more intelligent environments. When the ideal of Ambient Intelligence is successfully
implemented, it would make our approach for manual configurable environments unnecessary.

Ambient Intelligence (AmI) is a ideal vision of electronic environments that are sensitive and
responsive to the presence of people [19]. The vision is used as a top down method of reasoning
about technological science. Technological developments such as lightning, sound, vision, domestic
appliances, and personal health care products collectively improve people’s lives when integrated.
The devices work in a distributed manner where information and intelligence is hidden. The
AmI paradigm offers a base for technological innovation for a diverse set of use cases. The notion
ambience in Ambient Intelligence refers to a non-obstructive integration of technology into people’s
lives. Where the notion Intelligence stands for understanding and learning the environments that
people live in.

The idea of AmI originated in 1998 and was developed by a team from Palo Alto Ventures, a
US management consultant company. The work was commissioned for the board of management
of the Philips Company, which was responsible for consumer electronics equipment at the time.
The first official publication that mentions Ambient Intelligence was by Aarts and Appelo in
1999 [20]. Later in 2001, the European Commission used the vision for their sixth framework
(FP6) in Information, Society, and Technology, with a subsidiary budget of 3.7 billion euros.

One big application of AmI is the home environment, where AmI provides context-awareness
and proactiveness to support daily life. Where devices in the home environment, such as lights,
heating, curtains, television, smart phones, speakers adjust to support the daily life of a user.

As AmI is a broad domain of different research areas, the future of AmI is dependent on
these areas. In the book of Emiele Aarts[19] topics as Smart Materials, Electronic Dust and e-
Grains, Computing Platforms, Mobile Computing, Sensory Augmented Computing, and others
are discussed. Each of these areas could bring new improvements to the people’s lives. However
according to the authors, there is a desire for truly spontaneous and smart cooperation in ubi-
quitous computing. Where the solution needs to be invisible and intuitive in order to become
successful.

4 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Examples

In figure 2.1, we present different examples that could be implemented in an Ambient Home
Environment. Each example describes a certain activity that users might want. Example (a) is
about creating a comfortable temperature in the rooms that have humans inside. Such a scenario
needs to acquire knowledge about usage of the rooms, as well as which temperature per room is
comfortable in order to create a desired environment. Example (b) is about closing and potentially
opening the curtains when it is dark, or possibly against direct sun light. Example (c) is about
changing the brightness and color of the light based on the night cycle. When it is becoming
dark, a more yellow light is preferred over white light. And before bed time it is good to dim the
brightness of the light. Example (d) is about playing some suitable background music based on the
mood and time. When a user is working at home, more suitable music should be less distracting.
While during the dinner more romantic music could be played.

Figure 2.1: Ambient Intelligence Examples

2.1.2 Applying in practice

Current home automation solutions such as Eclipse Smart Home [18] and IFTTT(IF This Then
That) [47] can be seen as a primitive form of AmI, as they both allow control of electronic
environments and can be configured to be sensitive and responsive to the presence of people.
However, the user manually constructs the configuration as the intelligence is missing. In IFTTT,
users can create applets which combine two services, one service for triggering the applet such
as a weather update and another service as reaction to the trigger such as turning off the lights.
For IFTTT there are standard and popular recipes between services, where users can enable skills
in a few clicks. However, IFTTT misses features such as copying applets, having programming
constructs as if statements, while loops or functions. In Section 2.4 we present more details about
IFTTT and Eclipse Smart Home, including their differences.

2.1.3 Interaction between home automation and user

In the ideal situation, interaction with the user is kept to a minimum as the electronic environment
anticipates on the users needs. However, as explained in Section 2.1.4, systems do not know enough
to fully anticipate what the users want. Therefore there is a need for an interface (or multiple)
between the user and the underlying systems, in order for the user to configure the behavior of
the system. There are many types of interfaces to choose, from keyboards, touchscreens, speech
recognition etcetera [17].

Therefor, we need to choose an interface we use for our prototype. As the home environment
can be divided over different rooms and users could be doing different tasks where they cannot
use their hands, we believe that speech recognition and voice assistants are an excellent choice.
Consequently, we describe voice assistants and speech recognition in Section 2.2.

Configuration of Ambient Environments by speech 5

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.4 Privacy issues

The privacy issues are one of the arguments why we propose using a domain specific language,
as the user can manually configure an ambient home. In fully ambient environments, there are
privacy issues as the user could be exploited by the vendor providing the services [12]. In order for
an ambient intelligent environment to learn about the user, training data for the machine learning
algorithms has to be collected. Therefore an ambient intelligent system requires data about the
user in order to create a fully ambient environment. However, such data could provide private
information about the user’s life. The vendor collecting such data could potentially exploit and
harm the user. As a consequence, society and potential users can be wary about the data being
collected by the vendor and such issues can obstruct the creation of a fully ambient environment.

2.2 Voice Assistants

As we want to provide a voice interface for a domain specific language, it is beneficial to discuss
voice assistants and speech recognition. The reason why we choose for a voice assistant and not to
extend upon speech recognition is that a voice assistant is extendable by other parties as well. In
that sense, a voice assistant could be seen as an operating system upon which we build one of the
applications. In Section 2.2.1, we explain the definitions and vocabulary related to voice assistants
and speech recognition as well as how these concepts relate to each-other. In Section 2.2.2, we
give a brief historical overview and possible developments of voice assistants in order to provide
more context. In Section 2.2.3, we discuss different forms of extendability of voice assistants. In
Section 2.2.4, we briefly share some of the human aspects that need to be taken in consideration
when designing voice interfaces. In Section 2.2.5, we compare several arbitrary voice assistants
including both commercial and open-source assistants. Finally, we discuss the current state of
ambient environments in combination with voice assistants in Section 2.2.6.

2.2.1 Definitions and vocabulary

A voice assistant is equivalent to virtual personal assistance, which communicates with the user
via speech. The voice assistant is running on a computer with a microphone and a speaker. A
voice assistant is a combination of speech recognition, text-to-speech, and artificial intelligence.
Speech recognition is a sub-field of computational linguistics that focusses on recognition and
translation of spoken language into text by computers. The fields together rely on a combination
of linguistics, computer science, and electrical engineering.

For each part behind the voice assistant we describe the mechanisms in general:

Voice assistant The voice assistant is a virtual personal assistant that communicates with the
user via speech. A voice assistant is build on top of three techniques, namely speech re-
cognition, text-to-speech, and dialog systems. All of these three techniques are described
below. A dialog system has mostly fixed sentences, which allows the speech recognition to
be trained more specific to what the voice assistant supports.

Speech recognition Speech recognition is the translation of audio containing speech to computer
parsable sentences. For recognizing speech, a frequently used method is machine learning
[9]. Features are extracted from the speech signal, and these features are send to the speech
decoder. Training speech data together with training text data, and a lexical model allow
the decoder to produce a sentence. Notice that the training text data can be originating
from the voice assistant.

Text-to-speech Text to speech is the digital process of translating the text into spoken words.
There are two essential components [46], a text analysis system which decodes the text and
formulates a structure, together with a speech synthesis system which encodes this structure
into speech. For both components there are different techniques used which differ per system.

6 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

In general, text-to-speech is supported by the fields linguistic analysis, signal processing, and
machine learning.

Dialog system A dialog system is a computer system designed for having conversations with
humans. Such a dialog system uses different technologies, including natural language pro-
cessing, natural language understanding, and natural language generation. Furthermore,
techniques such database systems are used in order to quickly provide answers. Speech
recognition is trained with sentences that the dialog system supports.

In the development of voice interfaces, a certain vocabulary is commonly used and we introduce
the vocabulary below:

Vocabulary

Utterance An utterance is a continuous piece of speech beginning and ending with a clear
pause.

Intent An intent is a collection of utterances that share one intention.

Slot A slot is variable that is to be filled in by the user in a speech.

Conversation A conversation is an exchange of utterances back and forth between user
and assistant, a conversation can be realized as a state machine where intents are actions
and in each state different intents are possible.

Skill A skill is an ability of the voice assistant that groups certain intents and actions.

Example

To provide some examples of these words, we present an example Smart Home Intent where
the user can turn on the lights and possibly at a certain brightness. Example:

1. SmartHome turn the {room}
Slot

lights on

Utterance

2. SmartHome lights on

3. SmartHome turn the lights on in {room} at {brightness} percent brightness

2.2.2 Development of voice assistants
The first successful voice assistant on the market was Apple Siri, which was a “very impressive piece
of engineering” according to Boris Katz [6]. He describes that the challenge lies into bypassing
errors that each of the subsystems make, as the errors of all subsystems are multiplied. A solution
that Apple patented is restricting the queries to specific areas, which is similar to creating skills in
Google Home and Amazon Alexa as is described in Section 2.2.3. Siri show that speech interfaces
can be user friendly, as users can perform various tasks such as playing music, setting timers,
knowledge retrieval, arithmetic, finding sports results. As commercial voice assistants collect data
from their customers, they can use data analytics to find out which information the customers are
missing and manually add this functionality. As a result, creating voice assistants is vast amount
of manual labour.

Configuration of Ambient Environments by speech 7

CHAPTER 2. BACKGROUND AND RELATED WORK

As voice assistants currently rely mostly on speech recognition, text-to-speech, natural language
processing, and integration of third party services, both scientific and engineering improvements
of these components will improve voice assistants. Furthermore, from the side of Ambient Intel-
ligence the assistants could become more sensitive and responsive to the users. Currently, the
assistants seem to only provide simple intent matching based on third party services offered, but
for true Ambient Intelligence there is a need for more personalization, contextualization, and cross
integration between services. As illustration, when a sports match is coming up from a team that
the user likes and the match is nearby the user, the voice assistant could ask if the user would like
to book tickets from the match. Despite of such improvements, the privacy issues arriving from
Ambient Intelligence [12] as discussed in Section 2.1.4 could also be an concern for voice assistants
which could potentially halt or limit the development.

2.2.3 Extendability

We discuss the extendability of voice assistants because in this thesis we are interested in creating
new voice interfaces. Note that we discuss different types of extendability in voice assistants.
We look at both commercial and open-source assistants, where all open-source assistants are by
definition extendable. More information about these existing voice assistants is introduced in
Section 2.2.5.

Fixed intents Firstly, we discuss the first variant of extendability where the third-party
provides a file to the voice assistant with all accepted intents, utterances, and slots structure as
described above in Section 2.2.1. After the intent is recognized in the speech, a web request is
send to the third-party which provides a reply. A benefit from this extendability approach is that
the speech recognizer can be trained towards possible inputs, as these are defined in advance. The
commercial assistants, Google Home, Amazon Alexa, and Apple Siri, support adding functionality
via this variant [25][2][5]. Both Google Home and Amazon Alexa have a web-application where
the third-party uploads the file containing intents. For Apple Siri, intents are received in an
application build by the third-party running on the device of the user. Because Google Home and
Amazon Alexa have a similar structure and both send requests to a web-service, it is possible to
create cross-platform extensions that support both assistants.

In contrast, while Google Home, Amazon Alexa, and Apple Siri all support adding these intents,
there is a difference in how the third-party extensions are invoked. Both Amazon Alexa [4] and
Apple Siri [5] are more limited in this aspect as they do not support implicit invocation. Which
means that the user first has to ask to talk to the third-party extension before being able to use
the third-party intents. Google Home supports implicit invocation [27], which provides invocation
of the app without users calling the app by name. There is an exception for Apple Siri, as they
provide Intent Domains where the app name does not have to mentioned.

Text processing Secondly, an alternative method of extendability is when there is no intent
matching but more use of natural language processing. A speech-to-text engine is used for trans-
lating the speech to text and afterwards a matching algorithm is used to find the correct action.
A benefit of this approach is more flexibility in the implementation. A disadvantage compared
to the first approach is that the quality of speech recognition might be lower, because the speech
recognizer can have difficulties with similar sounding words as it cannot predict as the input is
not fixed. The commercial assistant Homey and all the open-source assistants we looked at use
this approach. Homey provides a more flexible matching with regular expressions and events [7].
Where Mycroft provides a more dictionary and regular expression based approach [38].

2.2.4 Human aspects of voice interfaces

Besides technology, there is a social aspect to conversations and therefore voice assistants. Con-
versations are not equivalent to mere exchange of information and tend to be illogical and non-
mathematical. For instance, a question like “Do you have hobbies?” would logically be a yes or
no question, however commonly the expected answer would be an enumeration of hobbies.

8 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

In speech often errors occur, whether it is between humans or from human to computer. The
speaker might have mispronounced a word or the listener has misheard it. Furthermore, there
might be hesitations or interruptions. Alternatively, corrections happen to recover from such
errors. However, voice assistants do not yet support such subtleties and is therefore more error-
prone. Therefore, it is important that the voice assistant instills user confidence and has strategies
for handling errors. Prompts such as “What was that?”, “Sorry, what time?” sound more natural
then giving a warning or repeating the original question. Furthermore, as the user does not know
if the assistant correctly received the command, it is important for the assistant to rephrase and
repeat the command.

2.2.5 Comparison of voice assistants

We want to compare the voice assistants we considered for our implementation. In the previous
Section 2.2.3, we dive deeper in the extendability differences between the voice assistants. As
there are various different voice assistants, we arbitrary selected and compared a small group of
voice assistants. In our selection criteria, we did require voice assistant to able to run on a custom
hardware. For commercial voice assistants we require that the company offers such hardware.

Although all assistants differentiate widely in features, price, and quality of voice recognition,
such a comparison would become out-of-date as many assistants are being improved regularly.
Furthermore, comparing assistants would be subjective as the usefulness of functionality would
differ per user and the quality of voice recognition differs per user accent. Therefore, we leave out
comparisons on features, price, and quality of voice recognition.

We choose to compare the assistants on license, speech recognition engine, and extendability.
Considering that voice assistants can always use new functionality and improvement, we mention
the date of latest code change for open-source projects. As long gaps in development might indicate
that the developers lost interest. We think the software license can be important when considering
creating extensions as certain licenses allow or disallow certain applications. We highlight which
speech recognition system is used because there could be a possible dependence on commercial
solutions. Another reason for highlighting the speech recognition system is that future comparison
studies might show which solution has a higher voice recognition quality. Lastly, we briefly compare
the extendability of each voice assistant which we describe as well in Section 2.2.3.

In Table 2.1, we present a brief overview of differences in the selected voice assistants. As can
be observed, the licensing differs per open-source project and many open-source voice assistants
are based on external speech recognition for translating the voice to text.

Furthermore, we provide a small description for each voice assistant below:

Amazon Alexa is a commercial voice assistant provided by the company ‘Amazon.com, Inc.’,
where the hardware solution is called Alexa Echo.

Google Home is a commercial voice assistant provided by the company ‘Google LLC’, where
the hardware is called Google Home.

Apple Siri is a commercial voice assistant provided by the company ‘Apple Inc.’, where the
hardware is called Homepod.

Homey is a commercial voice assistant provided by the company ‘Athom B.V.’, where the
hardware is called Homey.

Mycroft is an open-source voice assistant made by the Mycroft AI Team. For obtaining fund-
ing, they sell a hardware solutions called Mycroft Mark 1. The team is still developing
further the capabilities of the assistant, as there is daily activity in their Github repository.

Lucida is an open-source voice assistant which is the next generation of Sirus which was made
by the Clarifty Lab at the University of Michigan with the last Github change on 7 July
2017.

Configuration of Ambient Environments by speech 9

CHAPTER 2. BACKGROUND AND RELATED WORK

Jasper is an open-source voice assistant made by a small community with the core developers
originating from Princeton and Ruhr Uni Bochum. Where the latest Github change was on
27 Jan 2017.

Open Assistant is an open-source voice assistant which is maintained by a working group lead
by Andrew Vavrek with the last Github change on 31 August 2017.

Adrian is an open-source voice assistant by Gergely Hajcsak and Jamie Deakin with the last
Github change on 24 March 2017.

Table 2.1: Comparison between voice assistants

Name License Speech Recognition Extendability
Apple Homepod Commercial Siri Fixed intents, explicit invocation
Google Home Commercial Google Speech Fixed intents, implicit invocation
Amazon Alexa Commercial Amazon Speech Fixed intents, explicit invocation
Homey Commercial ? Text processing
Mycroft Apache License Google Speech Text processing
Lucida BSD License Kaldi Text processing
Jasper The MIT License Various Text processing
Open Assistant GNU v3.0 CMUSphinx Text processing
Adrian Apache License Various Text processing

Choosing a voice assistant to extend upon

As we implement our design of Chapter 4 upon an existing voice assistant, we pick an voice
assistant from the above comparison. While text processing might be more powerful, we find fixed
intents to be more important as recognizing such intents could be trained in machine learning
algorithms. As Google Home and Amazon Alexa have a compatible method of extending, an
extension from one could easily be adapted to the other. Google Home has a benefit over Amazon
Alexa as it supports implicit invocation. However, as for us an Amazon Alexa Echo was locally
available, we choose for Amazon Alexa.

2.2.6 Voice assistants and smart homes

In the combination of voice assistants and control of smart homes, there are several commercial
solutions such as Google Home [26], Amazon Alexa [3], and Homey [8]. These voice assistants
provide integration and control of smart home devices. The amount of integration with smart
home devices differs per platform and these platforms provide developer interfaces for smart home
device manufacturers. User commands are limited to basic control of the smart home devices, for
example turning lights on and off, configuring temperature, etcetera.

JASPER is an open-source voice assistant that includes a module for home automation [43].
For voice recognition it uses CMUSphinx and supports the commercial voice recognition ‘Google
Speech’ as well. As for speech accuracy, it is mostly dependent on the voice recognition software
used. The accuracy CMUSphinx is dependent on the test database size, configuration of the
decoder, and the transcribed audio [15][16].

2.3 Model-driven engineering

As the success of ambient intelligence relies on corporation of electronic devices, it would be useful
to apply the software development methodologies that increases abstraction and compatibility

10 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

between electronic devices. Furthermore, as we design a domain-specific language for ambient en-
vironments, it is beneficial to discuss Model-Driven Software Engineering and in extension Domain
Specific Languages.

Model-driven Software Engineering (MDSE) is a software development methodology with at the
center domain models, which are conceptual models related to a specific topic. The methodology
includes trying to encapsulate abstract representations of the knowledge and activities that belong
to a certain application domain. One of the goals from MDSE is to increase development speed,
this is achieved through automating the generation of runnable code from formal models[56]. Other
goals include increasing abstraction, enhancing software quality, reusability, and making export
knowledge widely available [56].

In this section, we discuss modeling languages, four-layered architecture of modeling, domain
specific languages, workbenches, and editors. With modeling languages we introduce well-known
languages and standards used within MDSE, as they are connected to modeling and domain specific
languages. This connection we explain with the four-layered architecture of modeling. Afterwards,
we introduce and explain in depth what domain specific languages are. Next, we discuss so-
called language workbenches which is tooling for defining, reusing, and composing domain specific
languages. Finally, we discuss different types of editors for manipulating domain specific languages.
Here we also include the link to voice interfaces.

2.3.1 Modeling languages

We discuss modeling languages as they are important in MDSE. Furthermore, domain specific
languages could be seen as a textual of modeling.

One of the better known Model-driven Engineering (MDE) initiatives are Object Management
Group (OMG), which proposed the Unified Modeling Language (UML) among others which to-
gether form the Model-Driven Architecture (MDA) [40]. Where Meta-Object Facility (MOF) is
the meta-metamodel of OMG.

UML aims to provide system architects, software engineers, and software developers with tools
for analysis, design, and implementation of software-based systems. They provide structural,
behavioral, and supplemental modeling where the structural and behavioral parts have semantics.
Structural modeling includes class and organizational diagrams. Whereas behavioral modeling
includes state machines, activity, and interaction diagrams. Supplemental modeling provides use
case, deployment, and information flow diagrams. Together, the ecosystem around UML provides
standards, design patterns, tooling with code generation, protocols.

Another well-known initiative is the Eclipse Foundation which is known for Eclipse platform
which is a multi-language software development environment [28]. The Eclipse Foundation build
the Eclipse Modeling Framework (EMF) which is a modeling framework that uses the tooling
from Eclipse Platform [45]. It unifies the programming language Java, XML Schemas, and UML
connected to EMF models. Behind EMF models there is the Ecore metamodel, which is a reference
implementation of MOF.

2.3.2 Four-layered architecture of modeling

In our efforts to explain MDSE, we discuss the four-layered architecture of modeling as it presents
a overall connection between model languages, domain specific languages, and overall abstraction.

In Figure 2.2, we present the four-layered architecture of modeling [39], where each layer
conforms to the layer above and the top layer conforms to itself. A metamodel (M2) is the model of
a model, and metamodeling is the process of creating these metamodels. If the model encapsulates
knowledge about a certain domain, then a metamodel would describe abstract representation of
the model. Furthermore, a meta-metamodel (M3) is a model of metamodel that usually conforms
to itself. A meta-metamodel is useful for example tooling and verification purposes. As when tools
integrate with a meta-metamodel, then all following metamodels will benefit from the integration.
Another possibility is transforming from one kind of model to another kind of model.

Configuration of Ambient Environments by speech 11

CHAPTER 2. BACKGROUND AND RELATED WORK

Meta-metamodel Core language

Editor/Structure
Language

Domain Specific
Language

ScriptObject

DSLMetamodeling MDE

Metamodel

Models

M3

M2

M1

M0

Ecore/MOF

Object

UML metamodel

UML class
diagram

= Conformance

Figure 2.2: Four-layered architecture of modeling

The meta-metamodel is the connection between domain specific languages and modeling lan-
guages. Therefore, models created with modeling languages can be referenced to in domain specific
languages. As discussed in Section 2.3.4, the Eclipse Modeling framework uses the Ecore as meta-
metamodel (M3) and Xtext relies on Ecore for the meta-metamodel.

2.3.3 Domain Specific Languages

As the design of a configurational language for ambient environments can be described as a Domain
Specific Language (DSL), we discuss what these languages are, what kind of tooling there is, and
what kind of interfaces exist in order to manipulate these languages.

A DSL is a formal, processable language focussed for a specific application domain. There
are a vast amount of DSLs [23] both widely used, such as Hypertext Markup Language (HTML)
for webpages and Structured Query Language (SQL) for database queries. But as well as more
proprietary languages that are for example only used within a certain company.

Using Domain Specific Language could lead to multiple benefits, such as more productivity,
higher quality, validation and verification, productive tooling, more domain expert involvement,
and more [55]. With many tasks in various domains being performed in General Purpose Lan-
guage (GPL)s, a task could be replaced by a DSL with a few lines of code. This could lead to
more productivity, higher quality, and more domain expert involvement. As there is tooling for
domain specific languages, such as the tools we discuss in the next Section 2.3.4, these language
workbenches can provide productive tooling together with validation and verification.

Despite of the benefits, there are however also challenges [55]. The effort of building domain
specific languages can be a great deal. Furthermore, the languages have to be taught and main-
tained as well. Besides maintenance, language evolution can also be an issue as all programs
become outdated when languages are changed [36]. Another issue is that languages might not
serve all the needs of the users demand and the user might be vendor locked, as the user cannot
move away to an alternative solution. There are more possible issues described in the book from
Völter et al..

2.3.4 Language workbenches

A language workbench, which is a term coined by Fowler[22], is a software development tool in
order to define, reuse, and compose DSLs. We discuss language workbenches as they are relevant
to model driven engineering and especially domain specific languages. A language workbench
provides integration and offers functionalities such as syntax coloring, code completion, static
analysis, and more. Language workbenches offer editors to manipulate program of domain specific

12 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

languages, we discuss what editors are in Section 2.3.5. Below we introduce several language
workbenches:

Xtext Eclipse Modeling Framework offers Xtext [21] to create domain specific languages on top
of their platform, with the benefit of their tooling and integration with their modeling as
well. Xtext contains a grammar language that is designed for describing textual languages.
Xtext uses the EMF Ecore models for describing the structure and can infer Ecore models
from a grammar, but can import existing Ecore models as well.

Jetbrains MPS An other workbench for designing domain-specific languages is Jetbrains Meta
Programming System (MPS) [32], with the unique feature that it uses projectional editing.
Using the open-source Jetbrains IntelliJ IDEA as a foundation to build upon, MPS uses
functionality such as auto completion, navigation, error checking, and quick fixes.

ASF+SDF The ASF+SDF Meta-Environment [50] was one of the first tools to be described
as a language workbench. Meta-Environment is an interactive development environment
which offers syntax-directed editing of ASF+SDF specifications as well as user interface
that can provide a graphical view of the specification. Other features include, program
analysis, transformation, visualization of parse trees, and a pretty printer generation. Both
Rascal [51] and Spoofax [33] are successors based on the ASF+SDF Meta-Environment.

Rascal Offered as an Eclipse-based IDE, Rascal is programming language for source code analysis
and transformation [51]. Rascal follows the Extract-Analyse-SYnthesize (EASY) paradigm
in order to provide analysis. For example, a programming language such as Java could
be extracted, all the classes could be analyzed, and the classes could be synthesized as a
diagram. It is also possible to create domain specific language as a custom extraction, where
extraction could include the derivation from the abstract syntax tree to a concrete syntax
tree.

Spoofax Spoofax is a language workbench build on top of Eclipse [33]. Spoofax provides the
creation of domain specific languages on top of SDF, both syntactic as semantic editor
services, and transformations including code generation.

MetaEdit+ is a platform-independent graphical language workbench for domain specific model-
ing [44]. Improving upon Computer-Aided Software Engineering (CASE) tooling, came the
more flexible and MetaEdit. MetaEdit is based on the Object-Property-Role-Relationship
(OPRR) data model, where MetaEdit+ is based on Graph-Object-Property-Port-Role-Relationship.
Where the Graph for example could be a UML Class Diagram. An object is related to the
Class or Object from the UML Class Diagram. Relationship relates to Inheritance and
Association of the UML Class Diagram. Role describes the relationships of the objects.
And ports relates to optional specification of an specific part of an object to which role can
connect. A property is a describing characteristic associated with other types, such as a
name, an identifier, or a description. Together, the data model can construct languages or
diagrams.

2.3.5 Editors

A program from a domain specific language is manipulated by the user in an ‘editor’. While
the word editor has multiple uses, we refer to the manipulation of programs or models. Often
editors are included in language workbenches, but not necessarily as editors could be included
into different types of software. As of our second research question is “How does a voice interface
for a domain specific language look like?”. We first want to look at different style of interfaces for
manipulating DSLs that currently exist. We start with textual editing, but continue to interfaces
that are more graphical.

Configuration of Ambient Environments by speech 13

CHAPTER 2. BACKGROUND AND RELATED WORK

Textual There are different editors for changing programs from a DSL [55]. There is the parser-
based approach, where the grammar specifies the sequence of tokens and words. The parser
is generated from the grammar and recognizes valid programs in their textual form. Regular
text editors are capable of editing the programs, however a language workbench such as
ASF+DSF Meta Environment [50], Rascal [51], Spoofax [33] or Xtext [21] also provides an
editor with autocompletion, syntax coloring, error checking, formatting, and much more.

Projectional Editing An alternative approach is a projectional editor, which works without
grammar and parsers. A projectional editor allows the users to directly modify the abstract
syntax tree. A workbench offering projectional editing is Jetbrains MPS [32]. MPS can
mimic the behavior of a textual editor for textual notations, but also provides a diagram
editor for diagrams and a tabular editor for editing tables. Furthermore, the Blockly library
provides an editor based on interlocking draggable blocks [24]. Where the output can be
code to a language of choice and custom blocks can be created for new applications.

Graphical In MetaEdit+ the graphical editing or rather modeling is at the front of the work-
bench. A graphical modeling tool allows edit models usually via graphical diagrams. A key
functionality is that models created via the graphical editor can be executed, exported to a
GPL, or used within other software. Often language workbenches such as, Xtext via Eclipse
Modeling, or Jetbrains MPS, have the ability to incorporate graphical editors. The UML
Class Diagram is a very familiar modeling language to be edited with graphical editors.

Speech Interface The approach we research in this thesis is editing of programs by speech
interfaces. Our goal is to provide an accessible solution for editing programs. In contrast
with the other editing solutions, a speech interface can at the moment not be generated
based on only the grammar. The interface has to be adapted to the domain.

A speech interface includes conversations, which provide an interactive editing experience.
Edit actions can be performed in multiple steps, where the interface remembers the context
within the program. The interface also requires the possibility to query the program, in
order to add, change or delete parts inside of the program.

There are several limitations to our approach, namely the error-proneness of speech as we de-
scribed in Section 2.2.4. Furthermore, voice interfaces have a delay in confirmation, whereas
in comparison graphical interfaces have a direct confirmation of user input. Nevertheless, in
our design and implementation in Chapters 4 and 5 we attempt to create such an interface.

2.4 Related work

In this section, we explore projects and work related to DSL configuration by voice interfaces or
ambient environments, or both voice interfaces and ambient environments. In Section 2.4.1, we
discuss two studies that focus on voice interfaces for controlling environments. These studies are
relevant as they attempt to translate speech into their domain specific language. Afterwards, in
Section 2.4.2 we discuss various projects and studies related to configuring ambient environments.
Such projects and studies provide us more domain knowledge about the configuration of ambi-
ent environments, which is our first research question. As two of these projects, namely IFTT
and Eclipse Smart Home, are referenced more often in this thesis we provide a comparison in
Section 2.4.3.

2.4.1 Controlling environments with natural language interfaces

For answering our second research question, about how a voice interface for a DSL looks like.
Two studies [37][11] utilize natural language processing and machine learning in order to translate
human language into a sequence of instructions for environment alteration. The human language
can be both in written form or originating from speech and being converted to text.

14 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

The first study “Tell me Dave: Context-sensitive grounding of natural language to manipulation
instructions” from Misra et al., interprets natural language commands and transforms them to a
sequence of mobile manipulation tasks which is executed by a personal household robot.

The second study “Reading Between the Lines: Learning to Map High-level Instructions to
Commands” from Branavan et al., maps high-level instructions to low-level commands in an ex-
ternal environment. They apply this method of mapping to GUI actions in the Windows applic-
ation, but applying this method to other domains is possible as well.

Both studies translate natural language to code unrelated to ambient environments, however
the methods used could be adopted by using similar natural language processing and machine
learning techniques. A problem is that their methods are currently limited to instructions, where
the requirements of the ambient environment require more event based programs. Furthermore,
the performance of these studies is limited by the quality of their machine learning algorithms.

2.4.2 Projects or work related to configuring ambient environments
Below we discuss several projects and studies for our first research question, what would be a DSL
for controlling ambient environments.

Eclipse Smart Home The Eclipse IOT team created a open-source framework that is a devel-
opment environment for smart home solutions [18]. The Eclipse Smart Home provides a
pluggable architecture and a custom domain specific language together with a development
environment to program the smart home. This environment is aimed for a more technical
end user as you have to download and learn a domain specific language. However, besides the
textual configuration they also provide different graphical interfaces that does allow the less
technical end-user to use it. Eclipse Smart Home as a framework provides the standards, the
development environment with a domain specific language, higher-level services, extension
points, etcetera. Eclipse Smart Home is the underlying framework for OpenHAB and other
solutions [18], such as Qivicon which is a commercial solution by Deutsche Telekom AG.

OpenHAB, which stands for Open Home Automation Bus, is a home automation platform.
OpenHAB focuses on providing integrations with over 200 different technologies [41], such as
lights, alarms, electricity meters, and more. Furthermore, OpenHAB provides custom graph-
ical interfaces for administration and control, where users can configure their integrations,
create new rules, and manage the state of their devices.

IFTTT IFTTT stands for IF This Then That [47], and is a free but closed-source web-based
service with a vast number of integration which consists of both smart home devices and
internet services. It is based on a trigger-action programming model, where users can connect
two services. One service provides the trigger, which could be time-based, a weather based
condition or an incoming e-mail. The other service is the action, which could be turning on
a light, making a coffee, or playing a song. Besides that IFTTT is it not open-source and the
business model remains undisclosed, the programming model is very limited as we point out
below in the comparison. Despite the limited programming model, the usage numbers [35]
and evaluation of model in online study [49] shows that the interface is easy for users.

Ontology based An ontology is a formal naming and definitions of types, properties, and inter-
relationships of entities. The ontology work we discuss have a focus on smart home solutions.
We discuss such ontologies as they could be used for design of smart home solutions. To
provide an example of an ontology, we present the class hierarchy diagram from [29] in figure
2.3. Academically there have been made multiple attempts to create an ontology or language
for creating a common standard of smart home programming [1][30][52][57][58][34][42]. Most
of these attempts are based on Web Ontology Language called OWL [30][52][57][34][42],
which is a family of knowledge representation languages which allows for both modeling
and deducing facts. Furthermore, many of these attempts also created working prototypes
that use smart home devices and sensor [1][52][57][58][42]. While others promised to make
prototypes [30][34].

Configuration of Ambient Environments by speech 15

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: Example of an ontology diagrammed as the class hierarchy diagram from [29]

CAMP In an effort to create more natural programming environments, Truong et al. introduced
a magnetic poetry interface for end-user programming of home applications [48]. Their
interface is inspired by magnetic poetry, draggable magnetic words that stick on a fridge, and
used it to extract programs from the combined sentences. With phrases such as “beginning
at 3 P.M. for 2 hours”, they could inspire users to create creative programs. While ideas
are inspirational, the paper does not disclose details about converting the poetry to working
programs.

2.4.3 Comparison between IFTTT and Eclipse Smart Home

As we reference IFTTT and Eclipse Smart Home more often in this thesis, we compare these two
automation platforms.

License Eclipse Smart Home is open-source, while IFTTT is a freeware web-based service.

Integrations OpenHAB claims to have “over 200 integrations” with technologies, while IFTTT
claims to have over “over 360 different partners”. Other Eclipse Smart Home partners have
their own integrations. However, IFTTT provides many integrations unrelated to ambient
environments, for instance Skype which is a telecommunications application software.

Expressiveness The underlying concepts of IFTTT are more limited than Eclipse Smart Home
as for instance IFTTT only provides one action after a trigger while Eclipse Smart Home
provides multiple. Furthermore, Eclipse Smart Home provides more programming constructs
such as if statements and conversions of data values. Where IFTTT only provides variables.

Ease of use With IFTTT, integrations and installation is relatively easy as many of their part-
ners provide the possibility to integrate with one click. With OpenHAB, extra configuration
is needed for each integration, for instance the IP address and possibly other settings. Other
partners using Eclipse Smart Home can provide their own graphical interfaces and configur-
ation methods. OpenHAB provides several different graphical interfaces as-well.

2.5 Discussion

We described the essentials of ambient environments, voice assistants, model-driven engineering,
and related work in order to construct a basis for our research questions. We continue with a short
discussion on ambient environments, voice assistants, and configuration.

16 Configuration of Ambient Environments by speech

CHAPTER 2. BACKGROUND AND RELATED WORK

Modeling ambient environments
Devices in AmI environments are controlled by microprocessors and in order to achieve success in
ambient intelligence, these processors need to be driven by some kind of configuration. In addition,
in practice systems often lack the knowledge to fully anticipate on the users wishes. Therefor, it
would be valuable if the user could easily change the configuration by themselves. As low level
languages would be to cumbersome to work for humans with when controlling many computers, a
higher level language would be required. Both IFTTT and Eclipse Smart Home provide a sufficient
model for configuring an ambient environment, as they both have integrations for many ambient
environment.

Voice assistants and ambient environments
Current voice assistants, such as Google Home or Alexa, lack control over ambient environment
configuration, but only provide changing the current state. For example turning on or off a light,
but not configuring at which time the light should turn off. Furthermore, IFTTT and Eclipse Smart
Home, are not easily manageable in the ambient environment as a computer or mobile device is
required to inspect and alter the configuration. Therefore we can conclude that a solution where
users can configure an ambient environment without voice is currently missing.

Configuration by speech
Configuration of ambient environments by voice interfaces provide their own challenges. In Sec-
tion 2.2.4, we found that voice interfaces are error-prone and that conversations are more illogical
and non-mathematical. Furthermore in Section 2.2.3, we discussed that adopting the more limited
approach results in a higher quality voice recognition. All these challenges together sound severe
when comparing speech interfaces to regular DSL editing on a computer.

Configuration of Ambient Environments by speech 17

Chapter 3

Requirement analysis

To answer our research questions, “What would be a suitable domain specific language that controls
ambient environments?” and “How does a voice interface for a domain specific language looks like?”,
we designed and implemented a voice interface and a domain specific language for configuring
ambient environments. In this chapter, we provide an analysis of all topics that lead to our
requirements.

Our analysis starts with an overall motivation in Section 3.1. Afterwards in Section 3.2, we
discuss the relation with our stakeholder and we present their insights that led to the require-
ments. As we need to focus on a specific ambient environment, in Section 3.3 we introduce and
discuss the by us imagined use cases. Afterwards, we make some observations on other home
automation platforms in Section 3.4. We provide the scope of our prototype in Section 3.5. Next,
we introduce the requirements in Section 3.6. Besides requirements, we provide some design de-
cisions in Section 3.7. Lastly, we provide a discussion where we return to our research questions
in Section 3.8.

3.1 Rationale
Our research questions arise from the interest in providing users a voice interface that can configure
their ambient environments. Users can decide in which manner the environment adapts to their
behavior, in order to make the environment more ambient.

The reason why we suggest using a speech interface, is that these interfaces do not require a
computer or mobile device and result in a more accessible environment. Letting users inspect and
change configurations by speech could make ambient environments more approachable, compared
to graphical-based configuration with existing tools. Furthermore, current voice assistants are not
powerful enough to configure ambient environments, as discussed in Section 2.2.6 they can merely
change the state of an environment. By allowing users to configure more abstract rules, we make
voice assistants more powerful.

3.2 Stakeholder
Our main stakeholder is the company Crownstone B.V. which is a subsidiary company from
research and development company Almende B.V. Crownstone B.V. is the creator of Crownstone,
which is bluetooth connected smart home appliance. ‘Crownstone’ is the literal translation of
the Dutch word ‘kroonsteen’ which in English would be understood as screw terminal. The
main functionality consists of switching and dimming electrical circuits in ambient environments.
The device has the following capabilities: switching devices of 16 Ampere or lower, dimming
LEDs or incandescent light bulbs, measuring electricity usage, and tracking bluetooth devices [14].
Crownstone is sold both as a plug and a built-in variant, where the former can be plugged in a
socket and the latter can be used within the wiring of a building.

18 Configuration of Ambient Environments by speech

CHAPTER 3. REQUIREMENT ANALYSIS

In the context of our research, Crownstone B.V. is mainly interested into research effort re-
lated to ambient environments. Crownstone B.V. is in the process of implementing smart home
functionality in several voice assistants [54][53] and has an interest in configuration by voice.

We interviewed Anne van Rossum, who leads Crownstone and has experience with Internet
of Things and ambient environments. With the following insights from him we constructed the
requirements for our prototype:

• The work should be accessible for newcomers, as a difficult solution would scare users away.
This leads to requirement REQ 3 and REQ 9.

• The users should not be bothered with details, they for instance do not have to know about
technicalities from hardware. This leads to requirement REQ 4.

• That the solution is usable by only speech, as voice assistants are taking over in the home
environments. This leads to requirement REQ 8.

• Ideally, Anne wants the home environment to have full ambient intelligence and suggested
self-learning elements. We concluded that ambient intelligence still have privacy difficulties
and we therefore focus on manual configuration and support of ambient environments which
leads to requirement REQ 2.

• The ambient environment should be inspectable for users who do not know what is happen-
ing. This leads to requirement REQ 7.

3.3 Use cases
We describe imaginary common use cases that are desired to supported in an ambient environ-
ment. Such use cases help us analyzing which functionality we should have in our prototype and
configuration language.

• After the sun is down, turn on the lights

The above scenario requests that after the sun goes down, the lights should turn on. Issues: There
are several issues with above sentence, 1: it is undefined when the lights should turn off, 2: it is
undefined which lights should turn on. Complexity: There is a condition and a trigger, similar
to structures in IFTTT. The condition is based on the location of the user, and the astronomy of
the sun. Furthermore, the trigger indicates changing the state of the lights.

• Everyday from 7 am to 9 pm, turn on the air conditioner.

In the above scenario, the air conditioner should turn on between 7 am and should turn off at 9
pm. Issues: Again unspecified is which air conditioner should turn on. Complexity: Again we
meet a condition, trigger situation similar to IFTTT. The condition is based on time and as well
on date, as the condition should trigger everyday of the week and not only once. Furthermore,
the air conditioner should turn off as well.

• Once someone is in the kitchen, turn on the kitchen light

In the above scenario, the light of the kitchen should turn on once someone is in the kitchen and
turn off once someone leaves the kitchen. Issues: It is unspecified what happens once someone
leaves the kitchen. If the light turns off directly it might be too abrupt, while staying on too long
would seem like the system is broken. A timeout would in general be expected. Complexity:
Again we meet a condition, trigger situation similar to IFTTT. However, we should add a delay
to once the light turns off. The condition is based on activity reported by a detection sensor.
Furthermore, the light turns on when detection is seen and the light turns off later.

Earlier in Section 2.1.1, we presented examples of the Ambient Environments. These scenarios
are more idealized as they also illustrate ambient intelligence. Namely the following examples:

Configuration of Ambient Environments by speech 19

CHAPTER 3. REQUIREMENT ANALYSIS

• “Comfortable temperature in rooms that are used” is about creating a comfortable temperat-
ure in the rooms that have humans inside. Issues: A ‘comfortable’ temperature is subjective
and besides heating the temperature depends on outside temperature, insulation, and other
factors. Complexity: The use case contains the condition where heating is only activated
in used rooms. Furthermore, there is a need of a feedback mechanism from the users in order
to make the temperature comfortable. As well as a thermostat that can control the heating
per individual room.

• “Curtains that automatically close in the evening” is about closing and potentially opening
the curtains when it is dark, or possibly against direct sun light. Issues: It is unspecified if
the curtains should open in the morning. Complexity: Based on whether it is evening or
perhaps based on the sun set, the curtains should close and open in the morning.

• “Yellow or white light and brightness based on the outside conditions” is about changing the
brightness and color of the light based on the night cycle. Issues: We assume that during
the night the light becomes more yellow, while during the day the light is more white. Fur-
thermore, the weather might be more or less light based on fog and clouds. Complexity:
This use case can be realized with either weather information and astronomical sunset in-
formation, or with multiple light sensors. Afterwards, based on the input variables a decision
is made that influences the light color and brightness.

• “Suitable music playing in the mood of the users” is about playing some suitable background
music based on the mood and time. Issues: There are multiple open questions: which
music is suitable? should the music also play when there are no users? What if there are
multiple users in the room with different moods? How do we find out which moods users are
in? Complexity: A simple implementation could be playing certain music playlists when
users are present. It is possible to speculate in which mood people are based on weather and
activity analysis by machine learning.

3.4 Observations from home automation platforms
Wemake several observations from existing home automation platforms that help our configuration
language design. We examine both IFTTT and Eclipse Smart Home, as these platforms are both
substantially used for configuring ambient environment.

IFTTT
As described in Section 2.4, If This Then That (IFTTT) provides a simple to use programming
model for connecting services. IFTTT offers a trigger-action programming model together with
so-called recipes. The programming model seems well suited for Ambient Environments, as ac-
tions often happen after reading input from sensors. Furthermore, the recipes in IFTTT bring
preconfigured rules that can be quickly activated by the user. In the voice interface, this could be
copied by providing intents that create preconfigured rules, such as “Wake to the colors of roses
on Valentine’s Day!” [31] while the rule behind it would be “If today is February 14, turn bedroom
lights RGB(255, 0, 127)”.

To see if IFTTT would be suited as a model, we check the available services and triggers
and compare those to our use cases from Section 3.3. In our use case section we mention lights,
air conditioning, kitchen light, heating, curtains, color of lights, and music. IFTTT provides
integration with for instance Philips Hue, Nest, Spotify, Samsung Room Air Conditioner, although
we could not find connected curtains at the time of writing. There are other services, such as garage
doors, refrigerators, dishwashers, robot vacuum, and more. Despite of the connected services, as
explained before in Section 2.4.3 there is no support for logical expressions or other programming
constructs. If a user wants to combine two conditions, for example temperature and time then it
would not be possible.

We can conclude the following points:

20 Configuration of Ambient Environments by speech

CHAPTER 3. REQUIREMENT ANALYSIS

• The programming model of IFTTT seems well suited for Ambient Environments.

• The recipes from IFTTT are a great method for adding accessible but advanced functionality
to the interface.

Eclipse SmartHome and OpenHAB
As described in Section 2.4, Eclipse SmartHome together with OpenHAB provide an open-source
vendor and technology agnostic automation software, with over 200 integrations with domestic
appliances and such. Eclipse SmartHome provides abstractions among the integrations, such as
the following appliance categories: Blinds, Car, CleaningRobot, Door, FrontDoor, GarageDoor,
LightBulb, Speaker, Window, and many more. These appliances also have properties, while
they are abstracted the actual properties may differ of appliances within the same category. For
instance, with two different lights, one light might support different colors while the other is only
white. There are however certain assumptions that could be made in order to identify and use
certain appliances, for example a light might contain certain capabilities like On/Off, Brightness,
Color, or Temperature.

Because software from Eclipse SmartHome and OpenHAB is open-source and has a founda-
tional architecture, it is possible to extract either individual integrations or the domain specific
language, or both. Extracting all the light appliance integrations could make our prototype func-
tional in practice, similarly if we would translate our domain specific language to the rule system
of OpenHAB.

We can conclude the following points:

• It is possible to translate our domain specific language to the rule system of OpenHAB

• It is possible to extract possible appliance integrations and make our functional in practice

3.5 Scope
There are many aspects to configuring an ambient environment, in order to realize a functional
prototype we restrict the scope. Below we present two limitations of our scope:

No integrations Integrating home appliances is a part of making the environment more ambient,
this normally includes connecting the system to home appliances and naming them. For
example, a Philips Hue light has a bridge with an IP address. In order to control a light, the
light has to be connected to the bridge, the bridge has to be connected to the system, and
the light needs to be categorized in a room. In our prototype we assume all the appliances
are already connected.

Simplified Home appliances have many properties that could be configured, in our prototype we
have simplified versions of lights, heating, and air conditioning. For example, heating and
air conditioning can be configured on a certain temperature which we do not include.

3.6 Requirements
Below we list the requirements that are either necessary or desired in order to construct the DSL
and voice interface. We split up the requirements into two sets of requirements, one set for the
domain specific language and another set for the voice interface.

Domain Specific Language
We build a new domain specific language because a speech interface is very different from a
graphical interface. In addition, the configurational language is created from scratch in order to
identify which properties are needed to create an usable DSL that supports a speech interface.

Configuration of Ambient Environments by speech 21

CHAPTER 3. REQUIREMENT ANALYSIS

We have the fundamental requirements REQ 1 and REQ 2 that are needed in order to have a
voice interface for a configurational language of ambient environments. Requirements REQ 4 and
REQ 5 are about the desired characteristics for the configuration language. Where requirement
REQ 3 is about making the language more accessible.

REQ 1 Support Speech Interface. The configurational language should be suitable for voice in-
terfaces. To verify: 1: all voice utterances that we define in the design have a corresponding
conceptual construct in the configuration language. 2: For all possible conceptual constructs
from the configuration language, there exists an utterance where the user can create, add,
or delete such constructs from the programs.

REQ 2 Support Ambient Environments. The language should be powerful enough for support-
ing ambient environments, especially the home environment. To verify: We require that
all use cases described in Section 3.3 have corresponding constructs in the configurational
language.

REQ 3 Human understandable. The language should be readable and understandable by a
human. To verify: We require that people without programming experience could construct
a program using a graphical editor.

REQ 4 Higher level. The language should be at a higher level of abstract with respect to hardware
and domestic appliances. To verify: we require that the language does not contain any
details about execution.

REQ 5 In-between language. The language should be between the voice interface and smart
home environment, in the sense that the configuration language does not depend on either
the voice interface or smart home environment. To verify: 1: Programs from the config-
uration language can be constructed in a graphical editor and be executed in a prototype
environment. 2: The voice interface can construct programs that are presented in a graphical
editor without being executed. Having such a construction allows separate implementations
of voice interfaces or smart home environments.

Speech Interface
The voice interface has to be able to manipulate the configuration language. Our voice interface
is build from scratch and using the requirements below. These requirements are constructed in
order to have a functional and desired voice interface.

The requirements REQ 6 and REQ 8 are essential to fulfill the premise of configuring an
ambient environment by a speech interface. While requirement REQ 7 provides more control
over the environment. Furthermore, requirement REQ 8 is to keep the voice interface accessible.

REQ 6 Add, edit, and delete rules. It is possible for end-user to create new, edit, and delete
rules. To verify: There exists a combination of one or more utterances such that the user
can create new a rule, edit a rule, and delete a rule.

REQ 7 Examination. End users can question behavior in the environment and intervene the
corresponding rules. To verify: For each possible state of all actuators, there is an utterance
formed as a question. After speaking such a question, the system responds with a suiting
explanation. Lastly, there exists a combination of one or more utterances such that the user
can edit, and delete the corresponding rule.

REQ 8 Speech only. A phone or laptop should not be required in order to use the voice interface.
To verify: we require that the voice interface can be used without laptop or phone.

REQ 9 No programmer experience. We want the user to be able to use the solution with having
a background in developing software. To verify: in the user manual, there are no mentions
made of programming concepts.

22 Configuration of Ambient Environments by speech

CHAPTER 3. REQUIREMENT ANALYSIS

3.7 Design decisions

We make several design decisions that shape the design of our configurational language and voice
interface. These decisions are the result of limitations we found during the design.

3.7.1 Configurational language

Inside the configuration language, we want to avoid ambiguity and it has to support a speech
interface because of requirement REQ 1. As a result, we introduce the following decision on
logical operations:

Simplification of conditions. Although we want to have logical operations, there are two limit-
ations in speech. We disallow double negations because “not not” is confusing. Furthermore,
there is an ambiguity with conjunctions or disjunctions together with negations as “not (A
or B)” sounds the same as “(not A) or B”. Therefore, we interpret the condition as having
the negation on the inside of the conjunction or disjunction. This influences the design of
the language as there is a restriction of how the language is build up.

3.7.2 Speech Interface

Within the speech interface, we made two decisions that shaped the design. The first decision
decides how we design the voice interface and the second decision decides how we fill in details.

No intelligence in voice interface. As commercial voice assistants does not provide any nat-
ural language processing or other artificial intelligence in their extension methods, we there-
fore only work with intentions, utterances, and slots. The consequence is that our interface
loses some expressiveness as the user cannot use complex sentences. This influences the
design, as we do not have the flexibility of accepting certain sentences under certain condi-
tions because we have to pre-upload the intentions. Furthermore, we cannot apply natural
language processing in order to understand sentences that are not defined yet. Especially
for longer sentences or sentences that contains words we did not specify it would become a
problem.

Educated guess or asking. As users do not provide all the details in the voice interface, we
make assumptions on actual intention or ask further. For example, the user asks for the
lights to be switched off but does not provide details on which light that needs to be switched
off. An educated guess could be made based on time, location of user, or history. If making
an educated guess fails, then the details could be inquired. This influence the design of
how the conversations work, we choose to make guesses in order to reduce the conversation
length.

3.8 Discussion

In this chapter, we introduced our motivation, the stakeholder, use cases, observations from other
platforms, requirements, and some design decisions.

To return back to our research questions:

• “What would be a suitable domain specific language that controls ambient environments?”

We conclude that both OpenHAB and IFTTT are capable of controlling an ambient environment.
IFTTT provides a trigger-action model together with recipes. Most use cases we described could
be integrated into IFTTT or Eclipse SmartHome. Where Eclipse SmartHome has the benefit of
more expressive rules while IFTTT is easier to configure as they do not require coding.

• “How does a voice interface for a domain specific language look like?”.

Configuration of Ambient Environments by speech 23

CHAPTER 3. REQUIREMENT ANALYSIS

We introduced requirements for the speech interface that are about the functionality it should
have and that it is easy to learn. More specifically, we require the ability to add, edit, and delete
rules. Together with the ability to let the users examine the created programs.

Furthermore, we made two decisions based on the speech interface. Namely that we do not use
natural language processing or other artificial intelligence for extending voice interfaces. While this
decreases the flexibility we have, it potentially increases the performance of the machine learning.

24 Configuration of Ambient Environments by speech

Chapter 4

Design

In this chapter, we introduce the design of our proposed solution. In figure 4.1, we present an
conceptual overview of our designed software. The diagram is split into two halves, namely the
voice interface and the configuration our ambient environment. Below we describe each half in
more detail and we explain the connections inside of our architecture.

Ambient Environment
ConfigurationVoice Interface

Utterance
Generator

Intentions

Amazon
Alexa

Console

JSON file

Alexa

utterances

request

Conversation

intentions Environment

Program

Evaluation

Configuration
Language

Action Handler

Home
training

user

action

conversation interaction

edit

program

definition

actions

interaction

state

Figure 4.1: Conceptual architecture

Voice Interface In the left half of figure 4.1, we present our software design in order to realize
the voice interface which is an extension on top of the voice assistant Amazon Alexa. For more
background information about voice assistants, we introduced extending voice assistants in Section 2.2.3, and
more about voice assistants in general in Section 2.2.

Extending interface of Amazon Alexa As can be observed, the user has a conversation
with the voice assistant from Amazon called Alexa. In order to build a voice interface
on top of Amazon Alexa, we need to provide a file with all accepted intentions, utter-
ances, and slots. We generate utterances that together are grouped into intentions, this
corresponds to the ‘Utterance Generator’ and the ‘Intentions’ boxes from the diagram.
We describe the process of generating utterance more detailed in Section 4.2.

Handing requests from Alexa Once both Amazon Alexa received and trained on all the
utterances and intentions, it is possible for the skill to be published and used by the
user. When the user speaks the correct utterances towards Amazon Alexa, a request
from Alexa is send to our prototype which is handled by the ‘Action Handler’. The
‘Action Handler’ together with ‘Conversation’ is responsible for handling the requests

Configuration of Ambient Environments by speech 25

CHAPTER 4. DESIGN

and providing responses. The ‘Action Handler’ focusses on filling empty slots and
matching to corresponding concepts of the configurational language. For example, it
could translate to an action of “Turn on the light in the sleeping room”. In Section 4.2,
we discuss the action handlers and conversations in more detail.

Ambient Environment Configuration In the right half of figure 4.1, we present our software
design in order to configure our ambient environment.

Configuration Language and Program The Configuration Language is the definition
for all the programs written in the prototype. A program is used for managing the
specific ambient environment from the user. The configuration language is used for the
graphical editor, as well as for the design of the object-orientated implementation. As
we have a graphical editor together with a speech interface, we define our configuration
language as class diagrams in Section 4.3.

Evaluation, environment, and home The created programs are evaluated as well, our
design includes an evaluation component together with a virtual interactive home. As
a consequence, the ‘Evaluation’-component sends actions to the virtual home, while the
virtual home sends back interaction information back to the ‘Environment’-collector.
An example of action is enabling a light and an example of interaction is an user moving
within rooms. In Section 4.4, we introduce the evaluation together with the semantics
of the configuration language.

4.1 Smart Home, the Ambient Environment
In this section, we introduce the ambient environment that both the speech interface and config-
uration language support. We based our ambient environment on the use-cased we provided in
Section 3.3.

We follow the action-trigger model where based on a condition, we follow with an action
in the environment. Furthermore, we adopted the recipes from IFTTT and provide some pre-
configurations.

4.1.1 Home
In figure 4.2, we present a floor plan from the ambient environment of our prototype. It contains
eight rooms and a balcony.

4.1.2 Actuators
To make our system alive, we require domestic appliances that can be controlled. Below we list
the appliances that we support in our prototype.

Lights our ambient environment offers one or more light bulbs in each room. A light can be
turned on or off and has a configurable color.

Heating our ambient environment offers radiators in a selection of the rooms. Per room, the
heating can be turned on or off. The heater does not contain any temperature settings as of
our scope limitations.

Air Conditioning our ambient environment offers air conditioning in a selection of the rooms.
Likewise as the heating, the air conditioning can be turned on or off. The air conditioner
also does not have any additional settings.

Music our ambient environment offers music in a selection of the rooms. The music can be turned
on or off and a specific genre could be chosen.

Curtains our ambient environment offers curtains in the rooms with windows. The curtains can
be closed or opened.

26 Configuration of Ambient Environments by speech

CHAPTER 4. DESIGN

Time 19:26

Þ

Þ

Þ

Þ

Þ

Þ
Þ

�

Figure 4.2: Floor plan ambient environment

4.1.3 Conditions
We categorize our conditions into three groups: logical condition, physical conditions, and tem-
poral conditions. Firstly, the logical conditions allow the configuration language to be more
expressive as multiple conditions can be linked. Secondly, the physical conditions are based on the
ambient environment and grouped per room, which is required to make the environment ambient.
Lastly, the temporal conditions allow actions happen relative to time, which is also required to
make the environment more ambient.

These are the conditions we support:

Logical Logical conditions allow the configuration language to be more expressive as multiple
conditions can be linked.

And is a conjunction that contains two other conditions, whom both have to be true in order
for the ‘And’ to be true. This is useful for example combining a physical condition with
a temporal condition.

Or is a disjunction that contains two other conditions, where either has to be true in order
for the ‘Or’ to be true. This is useful for example combining conditions based on
multiple rooms or conditions.

Not is a negation that contains one other condition, where if this condition is true the
‘Not’ is false and vice versa. This makes the language more expressive by for example
requiring that nobody is at home.

Physical Physical conditions are based on the ambient environment and grouped per room.

Activity is a condition based on whether someone is inside a certain room. For example,
if someone is in the living room.

Button is a condition based on whether a button inside of a room is toggled. For example,
a button could toggle a light.

Temperature is a condition based on temperature, it could activate or deactivate based
on whether it is a certain temperature.

Temporal Temporal condition are based on time and makes the environment more ambient.

Configuration of Ambient Environments by speech 27

CHAPTER 4. DESIGN

Time contains a start and an end time. If the current time is within these two times, then
true is returned. Otherwise false is returned.

Date contains a day and an month. If the current date has the same day and month, then
true is returned. Otherwise false is returned.

DateRange contains two dates. If the current date is on or later date 1 and before or on
date 2, then true is returned. Otherwise false is returned.

Sun is based on whether the sunset or sunrise, and will only trigger once per day.

Day contains a day of the week. If the current day of the week is that day, then true is
returned. Otherwise false is returned.

From contains a time. If the current time is after the configured time then the condition
returns true. Between 0 am and the configured time, the condition returns false.

Now condition will always return true.

4.1.4 Recipes

Below we describe recipes that are essentially preconfigured rules. Once the user speaks the
following utterances, the corresponding rule is added. In future work more recipes could be
added.

Romance “Wake me up to the colors of roses on Valentine’s Day!”, this recipe adds a rule with
a date condition on 14 February and changes the lights to pink.

ComfyTemperature “Set all the rooms at a comfortable temperature”, this recipe adds a rule
that turns on the heating for all rooms.

CloseCurtains “Close all the curtains automatically in the evening”, this recipe adds a rule that
closes the curtains everyday at 18 pm.

4.2 Voice Interface

We provide a voice interface to manipulate and intervene the configuration of the ambient environ-
ment. Our voice interface is extended upon an existing voice assistant as our project complements
a voice assistant that already contains other functionality such as setting timers, sending and
reading messages, weather information, etcetera. As discussed in Section 2.2.5, we have chosen to
extend upon Amazon Alexa as our voice assistant. Amazon Alexa accepts a JSON file with all
intentions and the corresponding utterances. Once Amazon Alexa matches an intention of ours,
it sends a HTTP-request to our web service which in return performs actions and provides a re-
sponse. In Section 4.2.1, we discuss how we designed and generated our intentions and utterances.
In Section 4.2.2, we discuss how we handle requests from Amazon Alexa.

4.2.1 Creating the voice interface

To create a voice interface around our configuration language, we need to comply with the require-
ments REQ 6 and REQ 7. The former requirement wants that we allow the end-user to create
new, edit, and delete rules. The latter requirement wants that we allow the end-user to question
and intervene the rules. To edit or delete a rule, the user needs to refer a rule which can be done
with the examination feature. In fact, intervening is equivalent with editing or deleting rules.

A rule consists of a condition and zero or multiple actions. Therefore we need utterances for
conditions and actions. Furthermore, we need utterances for questioning, editing and deleting.
With editing rules we re-use utterances from the actions and conditions and we rely on the context,
we explain how our prototype relies on context in Section 4.2.2. Below we present some example
utterances, how we generate utterances, and a limitation we found.

28 Configuration of Ambient Environments by speech

CHAPTER 4. DESIGN

Examples

Below we provide examples of generated utterances. A comprehensive list of all our ungenerated
utterances can be found in Appendix A.

Example Actions Turn on the lights in the living room. / Make the lights blue. / Turn off the
radiator.

Example Conditions Once there is someone in the kitchen. / The time is between 8 pm and 4
am. / Someone clicked the button. / And once someone is in the kitchen / Or when the
sun rises / When there is nobody home.

Example Why questions Why are the lights on in the living room? / Why is it so warm?

Example Recipes Wake me up to the colors of roses on Valentines Day / Set all the rooms at
a comfortable temperature

Example Delete Remove that rule. / Stop doing that. / Delete last rule.

Utterance generation

Utterances are generated as there is no intelligent natural language processing and the more
sentences we generate, the more sentences can be recognized. We use a form of regular expressions
where we have concatenation, alternation, and optionality. A sentence like “Why (is|are) (the)?
(lights|light|lamp) (on|not off) (in {room})?” will expand to 48 different sentences with a optional
room slot. Clearly as can be seen the regular expressions allow us to be more concise.

Limitation

Originally we planned to combine actions and conditions in one sentence, like “If it is 8 pm, then
open lights”. But the amount of combinations became too excessive and therefore unfeasible to up-
load. We instruct the user to speak the rule separately as a condition and an action. Furthermore,
combining multiple conditions in one utterance becomes unfeasible as well.

4.2.2 Handing requests from Alexa

We implement conversation in order to provide the user the ability to add, edit, and delete rules.
Additionally, adding conversations allows the user to create new rules in multiple steps and to
correct previous speech errors, together with the possibility to edit or delete a rule. Our imple-
mentation needs to remember where the conversation is, therefor we maintain a memory. The
memory remembers zero or one condition, zero or one rule, and zero or one room.

Below we enumerate for each intention the action we perform and what we remember for the
purpose of the conversation.

Action After the user speaks an action, either the following is true:

We have a rule in memory We add the action to the existing rule.

No rule in memory We directly create a new rule with a possible remembered condition
or a new Now-condition. Afterwards, this new rule is remembered.

Condition After the user speaks a condition, either the following is true:

We have a rule in memory We change the condition of the rule into the new received
condition and we confirm to the user.

No rule in memory We remember the condition in memory and suggest to the user to
add a rule.

Configuration of Ambient Environments by speech 29

CHAPTER 4. DESIGN

AndCondition After the user speaks an and condition, we retrieve a new condition in com-
bination with the fact that the condition be a conjunction of the old and new condition.
Therefore we require a rule is already in memory so that we can put the old condition on
the left side of the new conjunction and the new condition in the right side.

OrCondition After the user speaks an or condition, we retrieve a new condition in combination
with the fact that the condition be a disjunction of the old and new condition. Therefore
we require a rule is already in memory so that we can put the old condition on the left side
of the new disjunction and the new condition in the right side.

WhyQuestion After the user speaks a question, we potentially have a matching rule which we
remember and confirm back to the user.

Recipe After the user speaks a recipe, we directly add the corresponding rule which we remember
as well. Furthermore, we confirm back to the user that we created the rule.

Delete If there is a rule in memory, we will delete that rule and we confirm to the user.

4.3 Configurational Language

Based on our rationale, observations, requirements, use cases, and design decisions we construct
a configuration language. The language is based on a trigger-action model that supports the use
cases we described earlier in Section 3.3 and the examples from Section 2.1.1. We present our
language below in the form of UML class diagrams, as it shows our overall architecture as well as
the capabilities of the language and the possibility to extend. We use UML interfaces in order to
allow extensions to be added in the future.

Architecture

In figure 4.3, we present our main classes that describes the core of our language as well as some
details that are useful for execution. As can be observed, there is a program that can have zero or
more rules. The rule can be run with the ‘run’-operation, (de)serialized as XML with the ‘parse’
and ‘toXML’ operations, and can provide reason for the behavior with the ‘reason’-operation.
A rule has one condition and one or more actuators. Below in this section we describe more
about conditions and actuators. There is also a state class that contains all the state that all the
conditions need.

Rule

+run(state)
+reason(state)
+parse(xml)
+toXML()

ITopCondition
(from Conditions)

IActuator
(from Actions)

State

+time
+date
+temperature
+presence_per_room

Program

+rules 0..*

1..*1

Model1::ClassDiagram1

Figure 4.3: Top-level classes

30 Configuration of Ambient Environments by speech

CHAPTER 4. DESIGN

Conditions Conditions are triggers that will activate a rule. We have conjunctions, disjunctions,
negations, activity, button, temperature, times, dates. All of these conditions should allow for
making an environment more ambient to the user. In figure 4.4, we present the class diagram of
the conditions in our configurational language. We provide multiple interfaces to support future
extensions.

The ‘ITopCondition’-interface is the main interface that is used by the above rule. Classes
that implement this interface, need to implement the ‘holds’-method which based on the state will
return a true or a false. The ‘reason’-method is for explaining why a condition is true for a certain
state. Furthermore, the ‘should_update’-method is used for the semantics.

There are three logical conditions, namely the classes ‘And’, ‘Or’, and ‘Not’. These are the
logical part of the language namely the conjunction, disjunction, and negation. As we explained in
the design decisions of Section 3.7, because of the confusion of speaking certain logical expressions
we require the distinct interfaces ‘ITopCondition’ and ‘ICondition’. As a result, the ‘Not’-condition
is unable to have other logical conditions.

The ‘ITemporal’ is an interface for all time and date related classes, such as ‘Day’, ‘Now’,
‘From’, ‘Sun’, ‘DateRange’, ‘Date’, and ‘Time’. These classes return true or false based on the
current time and date of the environment. This interface also implements ‘ICondition’, and there-
fore ‘ITopCondition’ as well.

Classes that implement the ‘IPhysical’ interface base their condition on the physical ambient
environment. All these classes have a room as these conditions are based on information of
the environment. Furthermore, these classes currently consist of ‘Temperature’, ‘Button’, and
‘Activity’.

ITopCondition

+holds(state: State)
+reason(state: State)
+should_update(state: State)

ICondition

Not

+condition: ICondition

IPhysical

+room

ILogical

And

+left: ITopCondition
+right: ITopCondition

Or

+left: ITopCondition
+right: ITopCondition

ITemporal

Activity

Button

+onofftoggle

Temperature

+temperature
+comparison

Time

+from
+until

Date

+date

DateRange

+from
+until

Sun

+rise_or_set

From

+time

Day

+dayofweek

Now

Conditions::conditions

Figure 4.4: Condition classes

Actuator The actions make the configuration language alive. We have five different types of
actions: lights, heating, air conditioning, curtains, and music. Lights have colors and music can
be played with different genres. In figure 4.5 we present the class diagram of our actuators. As
can be observed, there is one interface and five classes that implement this interface.

Configuration of Ambient Environments by speech 31

CHAPTER 4. DESIGN

The ‘IActuator’-interface requires the ‘id’-method for recognizing a specific appliance. Notice
that there is no room information, as this information can be derived from the id. There is a
‘execute’-method, that when executed will perform the action on the specific appliance. Further-
more, there are the ‘parse’ and ‘toXML’ methods for XML (de)serialization.

Each class stands for a specific action on an appliance, and each action has certain actions.
For example, a light can be turned on, turned off, or can be toggled. The Light and Music class
also have the possibility to configure an extra parameter, the former allows a color and the latter
allows a genre.

IActuator

+id()
+execute()
+parse(code)
+toXML()

Light

+action: ON OFF TOGGLE
+color

Heating

+action: ON OFF TOGGLE

AirConditioner

+action: ON OFF TOGGLE

Curtains

+action: ON OFF TOGGLE

Music

+action: START STOP PAUSE
+genre

Actions::actions

Figure 4.5: Action classes

4.4 Evaluation and semantics

In Section 4.1, we introduced an ambient environment including all conditions and actions. Ad-
ditionally, in that section we already introduced when the conditions are satisfied. This section
shares more details about the evaluation and semantics, as evaluating programs is currently still
ambiguous.

4.4.1 Evaluation

The program originating from the voice editing process has to be evaluated on a smart home
environment. We implemented our smart home environment virtually where the tester can see the
results of the voice interface. However, the architecture can be connected to a real smart home
with appliance integrations. The evaluator evaluates the program by the semantics and the state
of the ambient environment. The new resulting actions are send to the smart home environment,
which in our case is the virtual interactive prototype.

Our smart home environment provides interaction events such as users moving, time, and
temperature. This information is used for the satisfaction of the conditions. In future work,
the interactions could be saved into a database in order to use the historical data to make the
conditions more adaptive to the users.

4.4.2 Semantics

Our DSL programs consists of zero or more rules, these rules have a condition and one or multiple
actuators. There is an order of processing rules, as certain rules have priority over other rules.
When an user create a new rule, the user likely has the expectation that it directly applies.

32 Configuration of Ambient Environments by speech

CHAPTER 4. DESIGN

Especially when the rule contains a ‘now’ condition, or is bounded to time. As a result, we choose
to process the rules from old to new. Where the newest rules overrule the older rules.

Once the condition is satisfied, the actuator should follow the given properties. In Section 4.1,
we already described for each condition when it is satisfied. It is trivial that an action follows
when a condition is satisfied, however our prototype also reverts the action once the condition is
no longer satisfied. For example, if the condition is “The time is between 4 am and 8 pm” then at
4 am the action happens and at 8 pm the action reverts. Almost all physical or time conditions
follow this behavior, except the ‘From’-condition which only lets the action happen and does not
revert the action. Furthermore, the logical conditions follow with the update behavior of their
child conditions. Below we define when an update happens and when not.

When do we respond on a changing condition?

It is trivial that an action follows when a condition is satisfied, however our prototype also reverts
the action once the condition is no longer satisfied. As we said before, for all conditions except
‘From’ a revert happens. For example, for a ‘Time’ condition, at 7am an event happens and at
8pm the reverse happens such as switching a light. While with a ‘From’ condition, the light would
only turn on. As we have conjunctions, disjunctions, and negations, we specify for each condition
when we respond to an update happens.

Below we have the function update, that accepts a condition together with the output of the
condition as input, and returns a boolean. With this function we can determine once conditions
changes their boolean values, if an update should happen. For ‘From’ a revert should not happen,
while for others a revert should happen. So when a ‘From’ becomes true, an update should happen
and when ‘From’ becomes false then an update should not happen. But for other conditions, such
as ‘Time’ the update should happen when the condition becomes true or false. For conjunction,
disjunction, and negation, an update should happen once one of the conditions requires a update.

We specify the above behavior more formal with the function update. Where the conditions
C, C1, and C2 stand for all possible conditions we have. Furthermore, the booleans B1 to B3

stand for all possible values that the condition could provide. Lastly, we use the variable P for all
possible parameters in the given condition.

To provide an example, And(From(8 am), Date(5 September)) should update once the date
is 5 September and once the time is 8 am. Furthermore, it should update once it is 0 am at 6
September, as the date is not 5 September anymore. Therefore, update should be true once either
of the conditions has a true update. Another example would be the From(8 am) alone, where the
update should only true once per day at 8 am but not at 0 am.

And update(And(C1, C2) = B1) := update(C1 = B2) ∨ update(C2 = B3) for all booleans B1,
B2, B3 and all conditions C1 and C2 (note, the ∨ is no mistake if any of the booleans change
a update should propegate)

Or update(Or(C1, C2) = B1) := update(C1 = B2) ∨ update(C2 = B3) for all booleans B1,
B2, B3 and all conditions C1 and C2

Not update(Not(C1) = B1) := update(C1 = B2) for all booleans B1, B2 and all conditions C1

From update(From(P) = true) := true and update(From(P) = false) := false

All others update(C(P) = B) = true, for C in [Activity, Button, Temperature, Time, DateR-
ange, Day, Date, Now] and for all boolean B

Configuration of Ambient Environments by speech 33

Chapter 5

Results

In this chapter, we present our results which include the implemented prototype and a reflection
of our findings. We describe our deliverables in Section 5.1. Afterwards in Section 5.2, we discuss
the achievements, technical challenges, and conformity of our requirements.

Video demonstration

You can watch a video at https://youtu.be/W-lS-h6uGSg where we demonstrate our voice
interface and home environment. We start by questioning why the heater is activated in the bath
room and we change the condition of the rule. Afterwards we create two new rules, namely closing
the curtains once the sun is down, and switching on the light once someone is standing in the
kitchen.

5.1 Deliverables

Below we present our deliverables together with a brief description. Our deliverables consist of a
user guide, a voice interface, a configurational language, and a web-application.

5.1.1 User Guide

To help new users, we provide a user guide of our prototype. The user guide provides examples
of sentences that can be used within the prototype, and the user guide provides a context for the
prototype. The user guide can be found in Appendix B.

5.1.2 Voice Interface

The voice interface consists of the generation of utterances and the handling of those utterances.
We implemented our interface on top of Amazon Alexa, which receives all the utterances and
sends voice requests to our web application.

Utterance generation and handling

As designed in Section 4.2, we implemented the utterance generation and the action handler in
our web application. The application has two execution modes, namely the exporting of generated
utterances to a JSON file and hosting the web application which includes receiving requests from
Amazon Alexa and handling these.

34 Configuration of Ambient Environments by speech

https://youtu.be/W-lS-h6uGSg

CHAPTER 5. RESULTS

Amazon Alexa

We created an Alexa Skill called ‘Voice Code’, which includes making a description, and upload
our skill JSON, and uploading the SSL certificate of our web application. Afterwards, we added
our Alexa appliance to the list of users that could test the skill. To be able to start using the
utterances, the sentence “Open Voice Code” has to be used. Afterwards the conversation with our
web application starts and the by us designed utterances can be used.

5.1.3 Configurational language
We developed our code in TypeScript [10], which allows us to fully implement the class diagrams
from Section 4.3 as there are equivalent concepts for the UML classes and interfaces.

Block editor
For prototyping purposes, we implemented block editor called Blockly [24] into our web application.
A screenshot of our implementation can be seen in Figure 5.1. A block editor lets users manipulate
constructs defined by the programming language. Each element from the abstract syntax tree is
a block. We created custom blocks for each element of our DSL, and build two methods in all
DSL classes described in Section 4.3. The first method is for exporting the program into XML of
Blockly and the second method is importing new rules from Blockly. Changes in the program via
the voice interface are pushed to the web page, and changes from the web page are pushed back
to the program.

Figure 5.1: Screenshot of the Blockly editor

5.1.4 Web application
The web application provides both the virtual environment, the block editor we previously de-
scribed, and the action handling of voice requests.

Virtual interactive home environment

Instead of using a real environment, we build a web page with a virtual environment projected.
In Figure 5.2, a screenshot of this web page can be seen. On the top is a time bar where the
passing of time can both be observed and altered. On the left side of the figure the floor plan of

Configuration of Ambient Environments by speech 35

CHAPTER 5. RESULTS

the apartment can be seen, it provides several lights, buttons, heating. Furthermore there is an
user icon which can be dragged and influences the environment. On the right side is the Blockly
editor which we previously discussed.

Figure 5.2: Screenshot of prototype

Crownstone Our prototype currently only implemented a virtual environment and does not
include an integration with a Crownstone-plug. An integration with a Crownstone plug could
realized within the current design. As a Crownstone plug can be connected between the power
socket and the light, heating, air conditioning, or music appliances. Where the plug could switch
the appliances on or off based on the configuration. For instance, ‘Turn off lights in living room’
would translate to sending off signals to the Crownstone plugs that controls a light.

Source code

The source code of our prototype can be found at https://github.com/whazor/voicecode. As
mentioned before, the project is written in TypeScript and requires to be publicly hosted as a web
service with a SSL certificate that Amazon Alexa can contact to.

5.2 Discussion

In this section, we discuss our prototype. Despite that the prototype is functional and follows the
requirements together with our design, we initially wanted to implement more functionality but
that was impossible both to time and technical constraints. Below we highlight several technical
challenges that are observed from the prototype. Furthermore, we describe how the prototype
followed the requirements.

5.2.1 Technical Challenges

Too many utterances We initially wanted to have a ‘IF condition THEN action’ utterance, but
the combinations of all utterances became too many to upload. There are other situations
as well where we will have too many utterances, when combining too many different words.
The challenge will be to have a voice assistant that supports more abstract sentences.

36 Configuration of Ambient Environments by speech

https://github.com/whazor/voicecode

CHAPTER 5. RESULTS

Enormous effort To create a voice interface that responds as desired by the user, a vast amount
of intents and utterances are required. As for the same intent, there are various utterances
and especially with longer sentences there are more variations. Furthermore, for responding
as desired, the interface is required to be more conversational which as well requires a vast
amount of intents.

Not a full editor Furthermore, to create a voice interface that can fully edit the configuration,
the voice interface will need to be streamlined for special requests. Such as deleting and
changing configurations, currently it is only possible for a user to find out that a configuration
exists when the user notices the results. For example, when a light is on then the user can
ask a question. However, if the light only turns on at night when the user is sleeping, then
the user might never discover this rule.

Expressiveness More advanced programs that for numeric calculations or perform other al-
gorithms are currently not possible. It might be useful to for example link the brightness of
the light based on the cloudiness outside.

Device integration While open-source solutions such as OpenHAB provide more integrations
that we could connect to. Actually connecting all these integrations requires configuration,
such as filling in IP addresses of devices or device bridges. Our design did not include these
steps that are needed to configure ambient environments.

Ambient Intelligence The DSL does not provide the ease of use that the vision of Ambient
Intelligence requires, as the user has to configure everything from start. In comparison,
IFTTT provides recipes where with one click new behavior is added. While adding recipes
is still a manual action, it is an improvement over creating configurations from scratch.

5.2.2 Verification of requirements
We implemented and designed our prototype based on the requirements originating from Sec-
tion 3.6. Below for each requirement we repeat what we need to verify and we describe the result.

Domain Specific Language

REQ 1 To verify: “1: all voice utterances that we define in the design have a corresponding
conceptual construct in the configuration language. 2: For all possible conceptual constructs
from the configuration language, there exists an utterance where the user can create, add,
or delete such constructs from the programs” Result: 1: All voice utterances have a corres-
ponding construct in the language. 2: Can all rules be created, edited and deleted by the
voice interface? Changing the program via the voice interface is not efficient as deleting a
rule is required, further the rule has to be questioned first before it can be changed. Addi-
tionally, not every logical condition could be created as conjunctions and disjunctions can
only have other logical expressions on the left side.

REQ 2 To verify: “We require that all use cases described in Section 3.3 have corresponding
constructs in the configurational language” Result: All use-cases from Section 3.3 are incor-
porated into the design and implementation. However, the heating condition is oversimplified
as we do not allow to configure a temperature.

REQ 3 To verify: “We require that people without programming experience could construct a
program using a graphical editor” Result: We provide testers with a graphical programming
editor called Blockly and they can change and observe the programs inside the browser.

REQ 4 To verify: “we require that the language does not contain any details about execution”
Result: When looking at the actuators from the language in Section 4.3. It can be observed
that there is an execution-method which has to be implemented in order to make the language
functional. We can conclude that the design itself does not conclude any execution details.

Configuration of Ambient Environments by speech 37

CHAPTER 5. RESULTS

REQ 5 To verify: “1: Programs from the configuration language can be constructed in a graph-
ical editor and be executed in a prototype environment. 2: The voice interface can construct
programs that are presented in a graphical editor without being executed. Having such a con-
struction allows separate implementations of voice interfaces or smart home environments”
Result: 1: All possible programs from the configuration language can be constructed in the
graphical editor and be executed in the virtual environment. 2: Programs constructed in
the voice interface are shown in the graphical editor.

Voice Interface

REQ 6 To verify: “There exists a combination of one or more utterances such that the user can
create new a rule, edit a rule, and delete a rule” Result: Although we support creation,
updating, and deletion of rules. There are not enough intents and utterances to make it
intuitive. Furthermore, referencing a configuration is only possible when the user notices the
rule as it cannot ask inspection questions otherwise.

REQ 7 To verify: “For each possible state of all actuators, there is an utterance formed as a
question. After speaking such a question, the system responds with a suiting explanation.
Lastly, there exists a combination of one or more utterances such that the user can edit,
and delete the corresponding rule” Result: Every actuator has questions for every possible
state of the actuator. Afterwards, the rule is put in memory and the user can edit or delete
the rule.

REQ 8 To verify: “we require that the voice interface can be used without laptop or phone”
Result: The prototype is usable via Amazon Echo and is therefor speech only.

REQ 9 To verify: “in the user manual, there are no mentions made of programming concepts”
Result: The user guide can be found in Appendix B. We make no references to programming
concepts.

38 Configuration of Ambient Environments by speech

Chapter 6

Conclusions

In this work, we designed and created a domain specific language together with a speech interface
for the configuration of Ambient Environments. We initially studied the background of ambi-
ent environments, voice assistants, domain specific languages, and discussed the shortcomings of
ambient environments and voice assistants. We discussed the benefits from domain specific lan-
guages and design a domain specific language for ambient environments. We designed a voice
interface that is capable of configuring our language. To further research our initial questions, we
have implemented both the language and voice interface which resulted in a functional prototype.
However, while implementing we have found several technical challenges that restricted us from
making a better interface.

6.1 Contributions
Our work resulted in several artifacts. We build a technically working DSL and voice interface
that controls virtual ambient environment. The voice interface is working on top of an existing
voice assistant and the DSL is connected to the voice interface together with a demonstration of
a virtual ambient environment.

Besides artifacts, our thesis provides research in voice interfaces for DSLs. For voice assistants,
we provide experience for creating more complicated voice assistants. Our implementation details,
together with the challenges we found could help new implementation become more successful.

Furthermore, we provide an interesting method to troubleshoot with running programs as the
user can question why certain behavior is happening. Often during the development of software
mistakes or wrong assumptions are made, which lead to unwanted behavior when the software is
in production. When the users of the program observe the unwanted behavior, they could ask
why it is happening and given an advanced enough interface they could fix it.

6.2 Future work
Our work is by far not complete enough for realistic usage. By our limited testing we found that
our solution is cumbersome by several issues. We describe these challenges in Section 5.2.1. Below
we describe work that can be performed for either solving the challenges, but as well as further
researching our research questions.

More intents and utterances The more utterances and intents a skill has, the more chance
there is that what the user desires is accepted. This work takes enormous effort, as there
are many variations of certain sentences. Analytics and user testing could be performed in
order to discover which utterances and intents are required.

Validation To validate the concept, a more realistic testing environment is required where mul-
tiple users test the concept. Also, different environments and devices could be tested, such

Configuration of Ambient Environments by speech 39

CHAPTER 6. CONCLUSIONS

as a office, factories, warehouses or hospitals.

Generalization Integrate with OpenHAB to support more categories and broaden the usage.
The current prototype is limited because it only supports lights and heating, for real use it
should support more devices. As OpenHAB and Eclipse SmartHome already provide gener-
alizations of devices and is open-source with build on top of Java, it would be straightforward
to broaden and integrate with our proposed domain-specific language.

Conversational In order to make the voice interface more useful, more conversations should
be implemented such that the assistant can steer the conversation and explain the options.
Currently it is not clear what the voice interface can do without a tutorial or explanation.
It would be useful if the interface could introduce itself and provide options.

Expressivity More research towards a more expressive domain-specific language is required,
while at the same time the interface has to be kept understandable. Making voice inter-
faces more expressive can be challenging, as expressiveness could lead to more intents and
utterances that would have be defined.

40 Configuration of Ambient Environments by speech

Bibliography

[1] Abdaladhem Albreshne and Jacques Pasquier. A domain specific language for high-level pro-
cess control programming in smart buildings. Procedia Computer Science, 63(Supplement
C):65 – 73, 2015. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2015.08.313. URL
http://www.sciencedirect.com/science/article/pii/S1877050915024412. The 6th In-
ternational Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN
2015)/ The 5th International Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH-2015)/ Affiliated Workshops. 15

[2] Amazon. Define the interaction model in json and text. https://developer.amazon.com/
docs/custom-skills/create-intents-utterances-and-slots.html, 2018 1. (Accessed
on 01/14/2018). 8

[3] Amazon. Amazon.com help: Use your smart home device with alexa. https://www.
amazon.com/gp/help/customer/display.html?nodeId=201749260, 4 2017. (Accessed on
01/05/2018). 10

[4] Amazon. Understanding how users invoke custom skills. https://developer.amazon.com/
docs/custom-skills/understanding-how-users-invoke-custom-skills.html, 12 2017.
(Accessed on 01/14/2018). 8

[5] Apple. Sirikit. https://developer.apple.com/documentation/sirikit, 12 2017. (Ac-
cessed on 01/14/2018). 8

[6] Jacob Aron. How innovative is apple’s new voice assistant, siri? New Scientist, 212(2836):
24, 2011. 7

[7] Athom. Athom developer. https://developer.athom.com/docs/apps/tutorial-Speech.
html, 12 2017. (Accessed on 01/14/2018). 8

[8] Athom. Discover smart home scenarios. https://www.athom.com/en/usecases/, 01 2018.
(Accessed on 01/05/2018). 10

[9] Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz. Automatic speech
recognition for under-resourced languages: A survey. Speech Communication, 56:85 – 100,
2014. ISSN 0167-6393. doi: https://doi.org/10.1016/j.specom.2013.07.008. URL http://
www.sciencedirect.com/science/article/pii/S0167639313000988. 6

[10] Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming, pages 257–281. Springer, 2014. 35

[11] S. R. K. Branavan, Luke S. Zettlemoyer, and Regina Barzilay. Reading between the
lines: Learning to map high-level instructions to commands. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, ACL ’10, pages 1268–
1277, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. URL http:
//dl.acm.org/citation.cfm?id=1858681.1858810. 14, 15

Configuration of Ambient Environments by speech 41

http://www.sciencedirect.com/science/article/pii/S1877050915024412
https://developer.amazon.com/docs/custom-skills/create-intents-utterances-and-slots.html
https://developer.amazon.com/docs/custom-skills/create-intents-utterances-and-slots.html
https://www.amazon.com/gp/help/customer/display.html?nodeId=201749260
https://www.amazon.com/gp/help/customer/display.html?nodeId=201749260
https://developer.amazon.com/docs/custom-skills/understanding-how-users-invoke-custom-skills.html
https://developer.amazon.com/docs/custom-skills/understanding-how-users-invoke-custom-skills.html
https://developer.apple.com/documentation/sirikit
https://developer.athom.com/docs/apps/tutorial-Speech.html
https://developer.athom.com/docs/apps/tutorial-Speech.html
https://www.athom.com/en/usecases/
http://www.sciencedirect.com/science/article/pii/S0167639313000988
http://www.sciencedirect.com/science/article/pii/S0167639313000988
http://dl.acm.org/citation.cfm?id=1858681.1858810
http://dl.acm.org/citation.cfm?id=1858681.1858810

BIBLIOGRAPHY

[12] Philip Brey. Freedom and privacy in ambient intelligence. Ethics and Information Technology,
7(3):157–166, 2005. 1, 6, 8

[13] Crownstone B.V. Readme of the crownstone app. https://github.com/crownstone/
CrownstoneApp/blob/f31a72913929d7a5b11c35113eff3c3963cbf7cf/README.md, 9 2017.
(Accessed on 04/09/2018). 2

[14] Crownstone B.V. Crownstone hardware specification. https://shop.crownstone.rocks/
pages/specifications, 02 2018. (Accessed on 03/22/2018). 18

[15] CMUSphinx. Frequently asked questions (faq) of cmusphinx. https://cmusphinx.github.
io/wiki/faq/, 10 2017. (Accessed on 01/07/2018). 10

[16] CMUSphinx. Tuning speech recognition accuracy - cmusphinx. https://cmusphinx.github.
io/wiki/tutorialtuning/, 10 2017. (Accessed on 01/07/2018). 10

[17] Alan Dix. Human-computer interaction. In Encyclopedia of database systems, pages 1327–
1331. Springer, 2009. 5

[18] Eclipse. Eclipse smarthome - a flexible framework for the smart home. http://www.eclipse.
org/smarthome/documentation/concepts/index.html, 1 2018. (Accessed on 10/04/2017).
2, 5, 15

[19] José Encarnação Emiele Aarts. True visions: the emergence of ambient intelligence. Springer,
2006. 4

[20] Aarts Emile and Lisette Appelo. Ambient intelligence: thuisomgevingen van de toekomst
(dutch), 1999. 4

[21] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than the quick
and dirty way. In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion, pages 307–309. ACM,
2010. 13, 14

[22] Martin Fowler. Language workbench. https://www.martinfowler.com/articles/
languageWorkbench.html, 6 2005. (Accessed on 02/22/2018). 12

[23] Martin Fowler. Domain-specific languages. Pearson Education, 2010. 12

[24] N Fraser et al. Blockly: A visual programming editor. https: // code. google. com/ p/
blockly , 2013. 14, 35

[25] Google. Actions documentation. https://developers.google.com/actions/reference/
rest/Shared.Types/Action, 5 2017. (Accessed on 01/14/2018). 8

[26] Google. Control smart home devices using google home. https://support.google.com/
googlehome/answer/7073578, 11 2017. (Accessed on 01/05/2018). 10

[27] Google. Discovery and actions on google. https://developers.google.com/actions/
discovery/, 11 2017. (Accessed on 01/14/2018). 8

[28] Richard C Gronback. Eclipse modeling project: a domain-specific language (DSL) toolkit.
Pearson Education, 2009. 11

[29] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing Zhang. An ontology-based context
model in intelligent environments. In Proceedings of communication networks and distributed
systems modeling and simulation conference, volume 2004, pages 270–275. San Diego, CA,
USA., 2004. vi, 15, 16

42 Configuration of Ambient Environments by speech

https://github.com/crownstone/CrownstoneApp/blob/f31a72913929d7a5b11c35113eff3c3963cbf7cf/README.md
https://github.com/crownstone/CrownstoneApp/blob/f31a72913929d7a5b11c35113eff3c3963cbf7cf/README.md
https://shop.crownstone.rocks/pages/specifications
https://shop.crownstone.rocks/pages/specifications
https://cmusphinx.github.io/wiki/faq/
https://cmusphinx.github.io/wiki/faq/
https://cmusphinx.github.io/wiki/tutorialtuning/
https://cmusphinx.github.io/wiki/tutorialtuning/
http://www.eclipse.org/smarthome/documentation/concepts/index.html
http://www.eclipse.org/smarthome/documentation/concepts/index.html
https://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/languageWorkbench.html
https://code.google.com/p/blockly
https://code.google.com/p/blockly
https://developers.google.com/actions/reference/rest/Shared.Types/Action
https://developers.google.com/actions/reference/rest/Shared.Types/Action
https://support.google.com/googlehome/answer/7073578
https://support.google.com/googlehome/answer/7073578
https://developers.google.com/actions/discovery/
https://developers.google.com/actions/discovery/

BIBLIOGRAPHY

[30] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware for building
context-aware services. Journal of Network and computer applications, 28(1):1–18, 2005. 15

[31] IFTTT. Wake to the colors of roses on valentine’s day! https://ifttt.com/
applets/136364p-wake-to-the-colors-of-roses-on-valentine-s-day, 2018. (Accessed
on 02/13/2018). 20

[32] MPS Jetbrains. Meta programming system. https://www.jetbrains.com/mps/, 2014. (Ac-
cessed on 02/19/2018). 13, 14

[33] Lennart CL Kats and Eelco Visser. The spoofax language workbench: rules for declarative
specification of languages and ides. In ACM sigplan notices, volume 45, pages 444–463. ACM,
2010. 13, 14

[34] Michael Klein, Andreas Schmidt, and Rolf Lauer. Ontology-centred design of an ambient
middleware for assisted living: The case of soprano. In Towards Ambient Intelligence: Methods
for Cooperating Ensembles in Ubiquitous Environments (AIM-CU), 30th Annual German
Conference on Artificial Intelligence (KI 2007), Osnabrück, 2007. 15

[35] Ingrid Lunden. Ifttt launches 3 ‘do’ apps to automate photo sharing,
tasks, notes; rebrands main app ‘if’. https://techcrunch.com/2015/02/19/
ifttt-launches-3-do-apps-to-automate-photo-sharing-tasks-notes-rebrands-main-app-if/,
2015 2. (Accessed on 01/20/2018). 15

[36] Josh Mengerink, Bram van der Sanden, Bram Cappers, Alexander Serebrenik, Ramon Schif-
felers, and Mark van den Brand. Exploring dsl evolutionary patterns in practice: a study of
dsl evolution in a large-scale industrial dsl repository. In 6th International Confenrence on
Model-Driven Engineering and Software Development (MODELSWARD 2018), 22-24 Janu-
ary, 2018, Funchal, Madeira-Portugal. SciTePress, 2018. 12

[37] Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions. The International
Journal of Robotics Research, 35(1-3):281–300, 2016. 14, 15

[38] MycroftAI. Mycroftai/mycroft-skills: A repository for sharing and collaboration for third-
party mycroft skills development. https://github.com/MycroftAI/mycroft-skills, 01
2018. (Accessed on 01/14/2018). 8

[39] OMG. Iso/iec 19502:2005 - information technology – meta object facility (mof). https:
//www.iso.org/standard/32621.html, 11 2005. (Accessed on 02/19/2018). 11

[40] OMG. Omg specifications and process. http://www.omg.org/gettingstarted/overview.
htm, 05 2018. (Accessed on 02/21/2018). 11

[41] OpenHAB. openhab - supported technologies. http://www.openhab.org/technologies.
html, 2018 01. (Accessed on 05/02/2018). 1, 15

[42] Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges, Peter Rigole, Tim
Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and Koen De Bosschere. Towards
an extensible context ontology for ambient intelligence. In EUSAI, volume 3295, pages 148–
159. Springer, 2004. 15

[43] Jasper Project. Control everything with your voice. http://jasperproject.github.io/, 1
2015. (Accessed on 01/06/2018). 10

[44] Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti Marttiin. MetaeditâĂŤa
flexible graphical environment for methodology modelling. In International Conference on
Advanced Information Systems Engineering, pages 168–193. Springer, 1991. 13

Configuration of Ambient Environments by speech 43

https://ifttt.com/applets/136364p-wake-to-the-colors-of-roses-on-valentine-s-day
https://ifttt.com/applets/136364p-wake-to-the-colors-of-roses-on-valentine-s-day
https://www.jetbrains.com/mps/
https://techcrunch.com/2015/02/19/ifttt-launches-3-do-apps-to-automate-photo-sharing-tasks-notes-rebrands-main-app-if/
https://techcrunch.com/2015/02/19/ifttt-launches-3-do-apps-to-automate-photo-sharing-tasks-notes-rebrands-main-app-if/
https://github.com/MycroftAI/mycroft-skills
https://www.iso.org/standard/32621.html
https://www.iso.org/standard/32621.html
http://www.omg.org/gettingstarted/overview.htm
http://www.omg.org/gettingstarted/overview.htm
http://www.openhab.org/technologies.html
http://www.openhab.org/technologies.html
http://jasperproject.github.io/

BIBLIOGRAPHY

[45] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling
Framework (2nd Edition). 2 edition, 2008. ISBN 0321331885,9780321331885. 11

[46] Paul Taylor. Text-to-speech synthesis. Cambridge university press, 2009. 6

[47] Linden Tibbets. ifttt the beginning. https://ifttt.com/blog/2010/12/
ifttt-the-beginning, 2010 12. (Accessed on 10/11/2017). 2, 5, 15

[48] Khai Truong, Elaine Huang, and Gregory Abowd. Camp: A magnetic poetry interface for
end-user programming of capture applications for the home. UbiComp 2004: Ubiquitous
Computing, pages 143–160, 2004. 16

[49] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. Practical trigger-
action programming in the smart home. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 803–812. ACM, 2014. 15

[50] Mark van den Brand, Arie van Deursen, Jan Heering, Hayco De Jong, Merijn de Jonge, Tobias
Kuipers, Paul Klint, Leon Moonen, Pieter A Olivier, Jeroen Scheerder, et al. The asf+ sdf
meta-environment: A component-based language development environment. In International
Conference on Compiler Construction, pages 365–370. Springer, 2001. 13, 14

[51] Tijs van der Storm. The Rascal language workbench. CWI. Software Engineering [SEN], 2011.
13, 14

[52] Tam Van Nguyen, Wontaek Lim, Huy Nguyen, Deokjai Choi, and Chilwoo Lee. Context
ontology implementation for smart home. arXiv preprint arXiv:1007.1273, 2010. 15

[53] Anne van Rossum. Integration with homey on crownstone transparent product roadmap.
https://trello.com/c/bEitBerq/34-integration-with-homey, 6 2017. (Accessed on
03/22/2018). 2, 19

[54] Anne van Rossum. Integration with alexa on crownstone transparent product roadmap.
https://trello.com/c/XHZi1Pey/11-integration-with-alexa, 6 2017. (Accessed on
03/22/2018). 2, 19

[55] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander, Len-
nart CL Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering - Designing, Imple-
menting and Using Domain-Specific Languages. dslbook.org, 2013. ISBN 978-1-4812-1858-0.
URL http://www.dslbook.org. 12, 14

[56] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen. Model-driven
software development: technology, engineering, management. John Wiley & Sons, 2013. 11

[57] Xiao Hang Wang, D Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology based context
modeling and reasoning using owl. In Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on, pages 18–22. Ieee, 2004. 15

[58] Jingjing Xu, Yann-Hang Lee, Wei-Tek Tsai, Wu Li, Young-Sung Son, Jun-Hee Park, and
Kyung-Duk Moon. Ontology-based smart home solution and service composition. In Em-
bedded Software and Systems, 2009. ICESS’09. International Conference on, pages 297–304.
IEEE, 2009. 15

44 Configuration of Ambient Environments by speech

https://ifttt.com/blog/2010/12/ifttt-the-beginning
https://ifttt.com/blog/2010/12/ifttt-the-beginning
https://trello.com/c/bEitBerq/34-integration-with-homey
https://trello.com/c/XHZi1Pey/11-integration-with-alexa
http://www.dslbook.org

Appendix A

Intents and Utterances

Actions
lights {action} (the)? (all lights|all the lights|light|lights|bulb|lamp|lamp bulb) (in {room})?

lightsColor (turn|make) the lights {color} (in {room})?

heating {action} (the)? (heating|heater|furnace|radiator) (in {room})?

airConditioner {action} (the)? air conditioner (in {room})?

playMusic (play|start) (suitable)? music (in {room})?

stopMusic (pause|suspend|halt|stop|end) music (in {room})?

musicGenre play {genre} music (in {room})?

openCurtains (slide)? open curtains (in {room})?

closeCurtains (close|shut) curtains (in {room})?

toggleCurtains toggle curtains (in {room})?

Conditions
sunUp “(when|once) the sun goes up”

sunDown “(when|once) the sun goes down”

temperatureAbove “temperature (in {room})? is above {temperature} (degrees|celsius)?”

temperatureBelow “(the)? temperature (in {room})? is below {temperature} (degrees|celsius)?”

temperatureAround “temperature (in {room})? is around {temperature} (degrees|celsius)?”

activity “(there is someone|someone is) in {room}”

button “(the)? (button|switch) (in {room})? is {click}”

time “(the time is between|everyday from|from|between)? {start} (to|and) {end}”

from “(from|at) {start}”

date “(on)? {date}”

now “(from)? now”

Configuration of Ambient Environments by speech 45

APPENDIX A. INTENTS AND UTTERANCES

Why questions

whyLightsOn “Why (is|are) (the)? (lights|light|lamp) (on|not off) (in {room})?”

whyLightsOff “Why (is|are) (the)? (lights|light|lamp) (off|not on) (in {room})?”

whyLightsColor “Why (is|are) (the)? (lights|light|lamp) (not)? {color} (in {room})?”

whyHeatingOn “Why is it (so)? warm (in {room})?”, “Why is the heating (on|not off) (in
{room})?”

whyHeatingOff “why is it (so)? cold (in {room})?”, “why is the heating (off|not on) (in {room})?”

whyMusicOn “Why is the music (playing)? (in {room})?”

whyMusicOff “Why is there no music (playing)? (in {room})?”, “Where is the music (in {room})?”

whyMusicGenre “Why is there {genre} playing (in {room})?”

whyCurtainsOpen “Why are the curtains (still)? (open|not closed) (in {room})?”

whyCurtainsClosed “Why are the curtains (still)? (closed|not open) (in {room})?”

Editing

removeThatRule “(can you|could you)? (remote|delete|cut out|erase|abolish) that rule”

inRoom “(only|in|only in|change to) {room}”

A.1 Recipes

romance “Wake me up to the colors of roses on Valentines Day”

comfyTemperature “Set all the rooms at a comfortable temperature”

closeCurtains “Close all the curtains automatically in the evening”

Slot Types

room

• hall

• balcony,

• bed room bedroom1, sleeping room

• bathroom bathroom, shower room, spa, shower, washroom

• living room, the living room

• kitchen, cookery

• toilet, wc

46 Configuration of Ambient Environments by speech

APPENDIX A. INTENTS AND UTTERANCES

action
• switch, toggled, toggle

• turn off, turn down, put out, turn out, shut down, put off, kill, halt, close, unplug, switch
off, shut off

• turn on, fire up, put in gear, initiate, start up, begin, activate

click
clicked, pushed, switched

genre
African, Asian, East Asian, South and southeast Asian, Avant-garde, Blues, Caribbean and
Caribbean-influenced, Comedy, Country, Easy listening, Electronic, Folk, Hip hop, Jazz, Latin,
Pop, R&B and soul, Rock

partOfDay
Early morning, late morning, morning, early afternoon, afternoon, noon, early evening, evening,
night, midnight

color
White, Silver, Gray, Black, Red, Yellow, Green, Blue, Purple, Pink

Others
temperature number

start time

end time

date date

temperature: number, start: time, end
{room}, {color}, {action}, {genre}

Configuration of Ambient Environments by speech 47

Appendix B

User guide

See next page.

48 Configuration of Ambient Environments by speech

Introduction
to VoiceCode

Welcome
Thank you for trying out Voice Code on Amazon Alexa.
In this document we explain how to use Voice Code to
configure a smart home.

Smart Home
On the right you see an illustration of the prototype smart
home environment. Each room has a name and many of
the rooms have lights, heating, and buttons.
Furthermore, there is a time that can be changed for
testing purposes.

Time 19:26

Þ

Þ

Þ

Þ

Þ

Þ
Þ

�

Actions

Changing or deleting

Conditions

Inspecting

Things you can say
All the categories of sentences that
Voice Code supports.

Recipes

!

"

#

$

%

Actions
Lights

Turn on the lights in the living room. /
Make the lights blue. / Turn off the lights.

Heating

Turn the heating on. / Turn off the
radiator. / Open the heating in the living
room.

Air conditioner

Turn the air conditioner on. / Start air
conditioner in bed room.

Music

Turn the music on. / Play country music.
/ Start jazz music in the kitchen. / Pause
the music. / Stop music.

Curtains

Open the curtains / Close the curtains /
Open curtains in bed room

Conditions
With conditions you can make actions
happen when you want them to
happen. For example it is possible to
turn on the lights in the night or to close
the curtain. If you speak these
conditions to Alexa together with an
action then you create a new rule.  

Connecting conditions with actions

First speak a CONDITION, then speak an
ACTION. Or visa versa. Afterwards the
two will be connected and once the
condition holds the action will happen.  
For example say “When the sun goes
down” and say “open the lights”.

Combinations

You can combine conditions by
mentioning a CONDITION and afterwards
saying “And CONDITION” or “Or
CONDITION“. After the conditions are
created, only once either or both of
them hold then the action will happen.

 
 
Time and date

Sun once the sun goes up / when the
sun goes down 
Time The time is between 7 am and 9
pm / the time is from 9 pm to 4 am  
From from 8 pm / at 4 am 
Date On 5 march 
Now Now 

 
 
Based on your home

Button Someone pressed the button in
the living room / The button is clicked  
Activity Someone in the living room /
There is someone in the hall 
Temperature Temperature in kitchen is
above 25 Celcius / Temperature in bed
room is below 15 Celcius / temperature
is around 22 Degrees  

Inspecting
After there are rules, you might forget
about these rules and wonder why
something is happening. Voice Code
lets you inspect your current rules and
change or delete them.

Ask for answer

Why lights

Why are the lights on in the living
room? / Why are the lights not on? /
Why are the lights red? / Why are the
lights off in the kitchen?

Why heating or air conditioning?

Why is it so warm? / Why is it so cold?
Why is the heating not on in the living
room?

Why music

Why is the music playing? / Why is there
no music playing? / Why is there jazz
playing in the kitchen?

Why curtains

Why are the curtains still open? / Why
are the curtains closed? / Why are the
curtains closed in the living room?

Changing or deleting
After asking a question or creating a
new rule, a rule is in memory that you
can change or delete.

Changing a rule

Change or add actions with “Change to
ACTION” or “Add ACTION”. Changing a
condition is possible with “Only when
CONDITION“. Or use the And/Or
combinations to expand the condition.

Removing a rule

Say: “Delete that rule” or “Stop doing
that”

Recipes
There are senteces that directly create a
rule, we call them recipes.

Romance

“Wake me up to the colors of roses on
Valentine’s Day!”, this recipe adds a rule
with a date condition on 14 February
and changes the lights to pink.

Comfortable Temperature

“Set all the rooms at a comfortable
temperature”, this recipe adds a rule
that turns on the heating for all rooms.

Close curtains

“Close all the curtains automatically in
the evening”, this recipe adds a rule that
closes the curtains everyday at 18 pm.

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Stakeholder
	Research questions
	Contributions
	Thesis organization

	Background and related work
	Ambient environments
	Examples
	Applying in practice
	Interaction between home automation and user
	Privacy issues

	Voice Assistants
	Definitions and vocabulary
	Development of voice assistants
	Extendability
	Human aspects of voice interfaces
	Comparison of voice assistants
	Voice assistants and smart homes

	Model-driven engineering
	Modeling languages
	Four-layered architecture of modeling
	Domain Specific Languages
	Language workbenches
	Editors

	Related work
	Controlling environments with natural language interfaces
	Projects or work related to configuring ambient environments
	Comparison between IFTTT and Eclipse Smart Home

	Discussion

	Requirement analysis
	Rationale
	Stakeholder
	Use cases
	Observations from home automation platforms
	Scope
	Requirements
	Design decisions
	Configurational language
	Speech Interface

	Discussion

	Design
	Smart Home, the Ambient Environment
	Home
	Actuators
	Conditions
	Recipes

	Voice Interface
	Creating the voice interface
	Handing requests from Alexa

	Configurational Language
	Evaluation and semantics
	Evaluation
	Semantics

	Results
	Deliverables
	User Guide
	Voice Interface
	Configurational language
	Web application

	Discussion
	Technical Challenges
	Verification of requirements

	Conclusions
	Contributions
	Future work

	Bibliography
	Appendix
	Intents and Utterances
	Recipes

	User guide

