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Abstract

In this thesis, we will present an Echo State Network (ESN) to investigate
hierarchical cognitive control, one of the functions of Prefrontal Cortex (PFC).
This ESN is designed with the intention to implement it as a robot controller,
making it useful for biologically inspired robot control and for embodied and
embedded PFC research. We will apply the ESN to a n-back task and a Wis-
consin Card Sorting task to confirm the hypothesis that topological mapping of
temporal and policy abstraction over the PFC can be explained by the effects
of two requirements: a better preservation of information when information is
processed in different areas, versus a better integration of information when
information is processed in a single area.
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Chapter 1

Introduction

1.1 Problem Statement

The Prefrontal Cortex (PFC) is one of the least understood brain areas so far.
However, we do know that the PFC is essential for higher cognitive function
like planning, learning, decision making and cognitive control. Therefore, the
PFC is relevant for many different fields: artificial intelligence would be helped
by replicating some of its functions; medicine could try to help people affected
by Attention Deficit Hyperactivity Disorder, schizophrenia and other problems;
and psychologists and neuroscientists could understand learning, attention and
development better (Fuster, 2008).

One way to achieve those goals is to investigate the function of different
areas of the PFC with neuroimaging methods like fMRI. Over the past years,
this method has led different research groups to propose that the PFC may
be organized hierarchically, with a topological mapping of abstraction over the
PFC (Koechlin and Hyafil, 2007; Badre and D’Esposito, 2007; Reynolds et al.,
2012; Botvinick, 2007; O’Reilly, 2010). Anterior regions of the PFC are thought
to facilitate higher abstraction levels, while posterior regions are responsible for
lower abstraction levels. However, the different research groups all investigated
slightly different tasks, found different imaging results and arrive at different
conclusions. In particular, the nature of the investigated abstractions varied:
domain generality, relational integration, temporal abstraction and policy ab-
straction have been distinguished (Badre and D’Esposito, 2009; Reynolds and
O’Reilly, 2009). Note that policy abstraction is synonymous with context ab-
straction as described by Koechlin et al. (2003). To continue this line of research
and gain insights about PFC functions, it is important to find out how these
different theories and imaging results relate.

As a possible resolution of the conflicts in the theories, we hypothesized
that the requirements of information integration and information preservation
in cognitive control tasks may explain the segregation of levels of policy and
temporal abstraction. After all, information can be better preserved when it
is handled in separate areas of the brain while it is better integrated when
it is handled in the same brain area because of wiring optimization (Sporns,
2011b). This is a general principle for relatively large neural networks and could
thus explain the described fMRI results. Our idea is that temporal abstract



information has to be preserved for a long time and should therefore benefit
from good information preservation. Information that is less abstract, on the
other hand, is only relevant for a short time, making its integration the most
important factor. Likewise, information that is necessary to interpret much
other information (and is therefore a policy abstraction) has to be preserved
better than information that directly determines the desired output. To test this
hypothesis, we used a hierarchical echo state network as a model for the effect
of information integration and preservation, somewhat similar to the model by
Dominey (1995). The tasks that were used are the n-back test for temporal
abstraction and a version of Wisconsin Card Sorting for policy abstraction.

An important feature of our model is that it is constructed with the intention
to implement it as a robot controller. This serves two purposes: firstly, we can
use the hierarchical echo state network to classify the context in which the robot
is operating and use the result to bias the behaviour that is desirable in this
context. This way, we may achieve efficient and effective “regulative control”
(Lagarde et al., 2010). Secondly, a robot platform is also very important for
neuroscience: it allows us to test PFC function in a real-life environment instead
of the artificial tasks that are used in psychology research. This is in line with
the ideas from Embodied and Embedded Cognition (EEC), which state that the
body and environment have to be taken into account when trying to understand
the cognitive abilities of the brain (Haselager et al., 2008).

All in all, we hope to support three steps forward in the understanding and
modelling of PFC function: most importantly, the step from competing theories
about topological mapping of abstraction on the PFC to complementary theories
that can explain all imaging results. Additionally, the steps from the traditional
simple and artificial tasks to complex, real-life tasks that fit the ideas of EEC
and the step to regulative control for real robots, based on human PFC function.

1.2 Thesis Organization

Those interested in a gentle introduction in the different research areas that are
relevant for our research can continue to the second chapter. Note, however, that
this background information is not directly necessary to understand the main
points of this thesis. The readers that have less time to spare are therefore
directed to chapter three: here the research papers that are important for our
investigations are discussed.

Following the background information and the current state of the art, we
will describe our own methods of investigation in chapter four. First we will
cover the step from the brain networks of the Prefrontal Cortex (PFC) to an
artificial neural network, which is followed by detailed descriptions of the model.
Finally, we will present the results, discuss them in the light of the current
theories and wrap up the conclusions.

1.3 Glossary

ACC Anterior Cingulate Cortex.
Anterior Towards the front, frontal, rostral.



BA

BG
BPTT

Caudal
CTRNN
Design Matrix

dIPFC
Dorsal
EA
EEC

ESN

GOFAI
Lateral
IPFC
LSM

MDS

Medial
PFC
Posterior
RC

Rostral
RTRL

SMA
SPA

Ventral
vIPFC
WCS

Brodmann Area. The de facto standard in brain topology, based
on cytoarchitectonic differences.

Basal Ganglia.

Backpropagation Trough Time. This is one of the supervised
learning algorithms for recurrent neural networks.

Towards the back, posterior.

Continuous Time Recurrent Neural Network.

The matrix that contains all the information that will be presented
to a participant during an experiment. One dimension corresponds
to time and every element in this dimension can correspond to a
trial (or, alternatively, another arbitrary step in time). The other
dimension consists of the different signals at that point in time,
for example the input signals.

dorsolateral Prefrontal Cortex.

Towards the top, superior.

Evolutionary Algorithm

Embodied and Embedded Cognition, also known as Embodied and
Situated Cognition.

Echo State Network. A type of Reservoir Computing that employs
coarsely integrated Continuous Time Recurrent Neural Networks
as its reservoir.

Good Old Fashioned Artificial Intelligence.

Towards the side.

lateral Prefrontal Cortex.

Liquid State Machine. A type of Reservoir Computing that em-
ploys spiking neural networks as its reservoir.

Multi Dimensional Scaling. A mathematical technique to visualize
data in an arbitrary number of dimensions.

Towards the midline.

Prefrontal Cortex.

Towards the back, caudal.

Reservoir Computing. Solving problems by feeding input signals
into a (non-linear) reservoir and probe its response. Echo State
Networks and Liquid State Machines are two subtypes.

Towards the front, frontal, anterior.

Real-Time Recurrent Learning. This is one of the supervised learn-
ing algorithms for recurrent neural networks.

Supplementary Motor Area.

Sense - Plan - Act. One of the design paradigms in artificial intel-
ligence and robotics, especially in GOFAL

Towards the belly, inferior.

ventrolateral Prefrontal Cortex.

Wisconsin Card Sorting.



Chapter 2

Background Information

This chapter is purely intended for the readers that are unfamiliar with one of
the fields that form the background of this study. This background information
is not required to follow the main train of thought in this thesis and can there-
fore be skipped. However, we will assume that the reader is familiar with the
concepts and ideas that we discuss here.

2.1 Prefrontal Cortex

In this thesis, we investigate a simple model for one of the functions of the
Prefrontal Cortex (PFC). Therefore, we will first discuss which basic knowledge
of the PFC psychology and neuroscience have already gained.

Anatomy and Structure

Although the PFC is often referred to as a single brain structure, in reality
we can find a lot of diversity in it. Not only have different parts of the PFC
different cyto- and myeloarchitectonic properties, we can also find much diver-
sity in the connectivity within the PFC and to other brain regions. In general,
two large networks have been identified: one ventral network and one dorsal
network, mainly distinguishable in lateral PFC (IPFC) and in premotor cor-
tex (PM). Interestingly, most unimodal sensory inputs project to ventrolateral
PFC (vIPFC) and not to dorsolateral PFC (dIPFC), while for polymodal in-
put the reverse is true, supporting the ideas that the networks serve different
functions (Pandya et al., 1996; Tanji and Hoshi, 2008; Badre and D’Esposito,
2009; Petrides, 2005). Most evidence for a hierarchical organization concerns
the dorsal areas. Therefore, we will focus on the Frontopolar Cortex (FPC, BA
10) and dIPFC (BA 9/46). See 2.1 for some help with the localization of the
specific areas in the human brain.

The most anterior region, the FPC (which is part of the orbitofrontal cor-
tex), has output connections to most parts of the PFC as well as with other
high-level regions in the brain. It also has output connections to PM (BA 6).
According to Badre and D’Esposito (2009), it only receives input from areas
that are located nearby (specifically, it does receive input from IPFC, but not
from PM). It lacks any connections with low-level areas like M1 and primary



sensory areas, which makes it a unique brain region (Ramnani and Owen, 2004).
The connections from and to the dIPFC also span a broad range. First of all
we find the connections with the FPC, as just mentioned. Secondly, there are
important connections to and from the basal ganglia (BG), the thalamus and
PM. The function of these connections will be discussed in more detail in the
section on action selection. Further output connections are directed at the cere-
bellum, supplementary eye field and cingulate motor area. Premotor Cortex
(which is generally not considered to be part of the PFC) is in turn connected
with Primary Motor Cortex (M1, BA 4).

The maturation of the anatomy of the PFC is also worth mentioning, es-
pecially since this development is different from what one might expect: Shaw
et al. (2008) measured the age at which the cortical thickness reaches it maxi-
mum as a proxy for completing development, and found that the orbitofrontal
and PM regions mature before IPFC regions. How this relates to other devel-
opmental measures and how these results should be interpreted remains to be
clarified (Wendelken et al., 2011; Diamond, 2002). Finally, we have to note that
the PFC is typically considered a brain area that showed much development in
the recent evolutionary history. This means that animal studies cannot always
be directly compared with studies in humans. Nevertheless, much of what we
know about PFC is the result of animal (especially rodent and primate) studies
(Uylings et al., 1990; Rilling, 2006).
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Figure 2.1: A lateral view on the PFC, with some of the most important areas
highlighted. Note that PM and M1 (BA 6 and 4) are not considered to be part
of the PFC. The ACC is located medially of the IPFC and can therefore not be
seen in the figure. Reproduced from Badre (2008).



Functions

The exact functions of prefrontal cortex and the best way to conceptualize these
functions are still widely debated. However, thanks to numerous neuropsycho-
logical and neuroimaging studies, we do know that the general function of the
prefrontal cortex is cognitive control (also known as the executive skills and the
supervisory attentional function): influencing other processes in the brain based
on its internal state. This includes at least planning, reasoning, problem solving,
performance monitoring, attentional control, action selection, keeping track of
goals, working memory and, last but not least, learning (D Esposito et al., 2002;
Wood et al., 2003; Dayan, 2008; Fuster, 2008). Note that these functions cover
a large area of artificial intelligence research (Russell and Norvig, 1995). We
will first give a short overview of what is known about PFC function so far and
then discuss action selection and attentional control in detail, as these functions
are most relevant for our work.

As we discussed in the previous section, the PFC is not a homogeneous brain
area. It has an intricate structure and different areas of PFC connect to dif-
ferent parts of the brain. This allows for easy hypothesis creation and testing
in neuroimaging studies, which has quickly given us a general idea of the func-
tion of different areas. Ventromedial PFC has reciprocal connections with the
amygdala and the hippocampus and indeed has been shown to be important
for integrating emotions and memories with other information (Bechara et al.,
1999; Milad et al., 2007). Lateral PFC on the other hand has reciprocal con-
nections with the premotor cortex and the basal ganglia and indeed has been
shown to be important for motor control, among many other cognitive control
functions (Ridderinkhof et al., 2004; Tanji and Hoshi, 2008; Goldman-Rakic and
Leung, 2002; D’Esposito et al., 2002). Another region that has received a lot
of attention is the Anterior Cingulate Cortex (ACC), which is also connected
with the dIPFC. It is thought that the ACC has the function to enhance control
when performance is weak (Silton et al., 2010). Finally, the frontopolar cortex
(BA10) is a large area at the front of the brain. Its function is largely unknown,
although multiple proposals have been made (Simons et al., 2006). Please note
that these results are neither exclusive nor definitive; the coming decades are
bound to bring additional insights.

So, we can find a general division of functions in the prefrontal cortex. How-
ever, it is not clear whether all these different brain areas with different functions
do in fact function differently: it could well be that most prefrontal cortex func-
tion can be explained by one overarching principle, just applied to different
domains (an influential example is the “guided activation theory” by Miller and
Cohen (2001)). On the other hand, the PFC could be one large system that
consists of different parts or not even one large system at all (Simons et al.,
2005). At least for the learning in PFC, there is some hope that this can all
be explained by dopamine-mediated reinforcement learning in combination with
the basal ganglia (Schultz, 2010). Many research groups are working on this and
much progress has been made the past decade (Glascher et al., 2010; Botvinick
et al., 2009). One of the basic ideas is that dopamine encodes the prediction
error for temporal difference learning. The dopamine is released in the Basal
Ganglia (BG) and is known to influence most of the PFC neurons. In this way,
connections in the PFC can be adapted to better predict outcomes of actions
in the future.



Another focal point in the debates about PFC is the way in which infor-
mation is stored. This is an important point, because of the more theoretical
interest in our reasoning and planning processes from both the psychology and
the artificial intelligence community. One popular approach to studying the pro-
cessing of information in the PFC is to define task sets. A task set is supposed
to be a set of rules, encoded in the PFC, that can be used to solve a specific task
(Sakai, 2008). The process of learning can then be described as the creation and
consolidation of new task sets and task switching can be achieved by activating
the new task set and deactivating the old task set. How this would be achieved
exactly is another question; task sets by themselves are purely a psychological
construct. The construct of task sets does explain many behavioural phenomena
though, for example task switching phenomena like the “switch cost” (Monsell,
2003), explaining its popularity.

We will now focus on attentional control and action selection by IPFC, as
those functions are most consequential to our research.

Action Selection and Attentional Control

A good account of how attentional control could work is given by Miller and
Cohen (2001). In that article, it is proposed that the IPFC uses one mechanism,
attentional control, to influence both the bottom-up flow of information and the
activation of motor programs. An example of control over bottom-up informa-
tion is visual attention research (Rossi et al., 2009; Passingham and Rowe, 2002;
Morse et al., 2009). Reducing the amount of incoming information is mainly
important when many stimuli are present. The control over motor programs is
also well-documented: mainly by the ideas of inhibitory control and for example
go/no-go tasks (Garavan et al., 1999; Mink, 1996). This is mainly important
when one stimulus has competing dimensions (for example in the Stroop task!)
or when very strong external stimuli are encountered. Thus, the “guided activa-
tion theory” from Miller and Cohen (2001) integrates a couple of psychological
findings and gives us a simple, high-level description to IPFC function. An
interpretation of the theory for a neural network is illustrated in figure 2.2.

A very different view of prefrontal cortex function is obtained by investi-
gating its anatomical connections with the basal ganglia that were mentioned
before. Over the past decades, it has been found that these connections form
loops, with output from the cortex to the Striatum, and input to the cortex
trough the Thalamus. Between the Striatum and the Thalamus multiple con-
nections have been found, involving the Globus Pallidus, Subthalamic Nucleus
and Substantia Nigra. Other connections and areas are probably important as
well (Parent and Hazrati, 1995). The hypothesized function of these structures
is action selection (Bogacz and Gurney, 2007). Apart from recordings of neural
activity and lesions studies, one of the most interesting arguments for this hy-
pothesis is that the BG are a very old brain region and that action selection is
also one of the first problems an organism has to solve (Redgrave et al., 1999) 2.
The cortical loops that connect to the BG are then an extension or adaptation
from older action selection mechanisms, to include the internal state (e.g. plans

1Of course, attentional control does not necessarily have to work on motor programs in the
Stroop task; it can also work on intermediate representations.

2Compare with the amount of effort spent on action selection for robots, e.g. Yamada and
Saito (1999).
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Figure 2.2: Attentional control by the neural networks in the PFC according
to Miller and Cohen (2001). At the left side, stimuli activate neurons. These
neurons are coupled to response neurons at the right side. Without interference
of the PFC, the stimuli only result in automated responses. Thanks to top-down
connections from the PFC, these automated responses can be suppressed. The
internal state of the PFC can for example be determined by the context of the
situation, which asks for a different, non-automated response. Reproduced from
Miller and Cohen (2001).



or beliefs) of the organism in the action selection process. How these loops
function on a more detailed level is much debated though and an active area
of research (Prescott et al., 2006; Hazy et al., 2007). In the literature review
chapter, we will discuss an influential computational model, made by O’Reilly
and Frank (2006).

Our own research fits best in the tradition of Miller and Cohen (2001), al-
though the two points of view are not mutually exclusive. The guided activation
theory is simply more abstract and does not make detailed predictions about
the neural basis of the system. The ideas about cortical loops are very de-
tailed in their anatomical description, but remain uncertain in the functional
domain. Therefore, our own research can give results about general princi-
ples of PFC function, but is neither in agreement nor conflicting with evidence
about the exact neural structures. One example of an attempt to reconcile the
two approaches is Reynolds and O’Reilly (2009), which will be discussed in the
literature review chapter.

We may conclude that we still have very much knowledge to gain regarding
the PFC. Nevertheless, we can keep in mind that the PFC has an intricate
structure that is responsible for most of the executive functions of the brain.
One of these functions is to filter the bottom-up information stream and to
control which motor programs are executed. This is probably mediated by the
loops through the BG and PFC.

2.2 Recurrent Neural Networks and Echo State
Networks

We will implement the model of the PFC with an Echo State Network. The
basic concepts that are required to understand those networks are described
here.

Recurrent Neural Networks

Neural networks that allow connections between nodes to form cycles are col-
lectively known as recurrent neural networks. Because of the cycles, recurrent
neural networks can have an internal state that may influence the processing of
new input in the network. This is in contrast with feedforward neural networks
that will always process an input pattern in the same way regardless of its his-
tory. To keep track of all the connections, a recurrent network is usually defined
by its weight matrix (or connectivity matrix). In this matrix the columns rep-
resent nodes from which connections originate and the rows represent the same
nodes, but now on the receiving side of the connection. Thus, each element in
the matrix represents the weight of one of the possible connections. This system
is also described in figure 2.3.

In an artificial recurrent neural network, we can now update the activation
state of all the nodes in roughly the same way as in a feedforward network:
at each node, we multiply the weights of all the incoming connections with
the corresponding activations, sum these and apply an activation function (also
known as the squeezing function) to get the new activation state. This can be
summarized to the following equation, assuming that the activation function f
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works on each element of the activation vector separately:

— -,

A)new = f(AoldW + b) (21)

with A the activation vector, W the connectivity matrix and b the biases of the
nodes.
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Figure 2.3: A weight matrix for a recurrent neural network. When considering
node b, we can find in the second column of the matrix that two connections
originate there: one weak connection to node a and one strong connection to
node c¢. We can see in the second row of the matrix that node b receives one
inhibitory connection, from node a. Reproduced from the documentation of
JCell (Spieth et al., 2006).

Note that although biological neural networks also show many recurrent
connections, recurrent artificial neural networks are usually not even near ap-
proximating all the possible dynamics in biological neural networks. Therefore,
most artificial neural networks can only be used for modelling of biological neu-
ral networks at a rather high abstraction level. However, some projects, like
Pecevski et al. (2009), specifically aim at modelling all the details of biological
neural networks, such as neurotransmitter dynamics, dendritic potentials and
synaptic plasticity. These simulations require too much processing power to be
of practical use for more mundane applications unfortunately.

Training of Recurrent Neural Networks

Apart from network dynamics, we obviously also need a way to mould these
dynamics into a useful form. For the training of recurrent neural networks we
have quite some possibilities. For supervised settings, meaning that we have
a teacher signal for each moment during the training procedure, we can em-
ploy a gradient descent algorithm. The standard algorithm is “backpropagation
through time” (BPTT) (Werbos, 1990). A handful of other algorithms have
been developed, for example “real-time recurrent learning” (RTRL) (Williams
and Zipser, 1989). All these algorithms suffer from the problem of vanishing er-
ror gradients though: when the dynamics of the network are near a bifurcation,
a change in the weights may only lead to a tiny change in the results, slowing
down the convergence of the algorithm considerably (Doya, 1992).

A second option is an unsupervised learning algorithm. They have been used
from the beginning of recurrent neural network research; Hopfield for example
used Hebbian learning (Hopfield, 1984). It can deliver robust results for some
specific applications. How to solve more problems with unsupervised learning
algorithms remains an active area of research (e.g. Spratling (2012)). The obvi-
ous disadvantage is of course that an unsupervised algorithm cannot guarantee
a specific end result.

11



There are still other options: particle swarm optimization (Gudise and Ve-
nayagamoorthy, 2003), simulated annealing, evolution (Sexton et al., 1999) or
reinforcement learning (Lin, 1993). Reinforcement learning uses feedback from
the environment to strengthen actions that give high rewards and weaken ac-
tions that give no rewards. Although it is an interesting development and an
impressive feat that it can be implemented in neural networks, it still has many
problems: credit assignment is difficult in all but the most simple situations,
unknown parts of the current state leads to perceptual aliasing, the explosion of
the dimensionality and the use of discrete states and actions, etcetera (Vlassis
et al.,, 2012). Two studies that investigate the link between abstractions and
reinforcement learning are Frank and Badre (2011) and Botvinick et al. (2009).

Using evolutionary algorithms with neural networks is a field of research
on its own as well (e.g. Yao (1993); Kaiser and Hilgetag (2010)). The most
basic approach is to directly encode every weight of a recurrent neural network
in the genome. This research project in fact started off with an attempt at
using this method. Two problems were encountered: firstly, when using a fully
connected network, the genome quickly becomes far too long as the number of
connections is quadratic with respect to the number of nodes. Secondly, the
networks tend to fall into the “holes of the fitness function” before developing
dynamics that are rich enough to solve the whole problem. The result of a long
evolutionary run can for example be a network that always picks one output,
regardless of the input. This second problem might be solved by following the
advice of Beer (1995) and “anchoring” the search to certain networks that only
need small changes to show rich dynamics, but this was not investigated in this
study. Nevertheless, some researchers manage to get good results with this most
basic method, e.g. Paine and Tani (2005).

More sophisticated methods of using evolutionary algorithms with recurrent
neural networks have of course been developed. A good example to illustrate
this is neuroevolution of augmenting topologies (NEAT) (Stanley and Miikku-
lainen, 2002). Instead of changing the connection weights in a fixed topology,
the genotype in NEAT represents the topology as well. This allows to develop
more complex neural networks from simpler ones and even different topologies
that perform better at different aspects of the task. Another noteworthy line of
research is Evolino (Schmidhuber et al., 2007), employing so-called long short-
term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997; Gers and
Schmidhuber, 2001). The LSTM networks are yet another approach at im-
proving gradient-based learning algorithms for recurrent neural networks, by
enforcing that the network consists of very specific building blocks. Evolino
is the evolutionary extension of this approach to increase the number of tasks
that LSTM networks can be used for. After all, for LSTM networks the same
is true as for all other recurrent neural networks: it will not achieve a good
performance on all tasks.

Unfortunately, even with such a large number of training methods, the re-
sults are not satisfactory for all problems. While recurrent neural networks are
universal dynamics approximators in theory (Beer, 1995), in practice they fail at
many tasks. Therefore, new methods of using recurrent neural networks are still
being developed. One of these (rather) new methods is Reservoir Computing.

12



Reservoir Computing

Reservoir Computing (RC) is one of the answers to the problems of recurrent
neural networks with supervised learning. When using this method, the recur-
rent neural network itself is referred to as the “reservoir” and is not trained at
all. Its only function is to combine the inputs with its internal state, effectively
mapping the inputs to the high dimensional space of the network state (similar
to the kernel trick, e.g. Baudat and Anouar (2001)). The network state is then
fed into a perceptron and we try to get the desired output by setting the weights
of the perceptron, which can even be done with linear regression. Sometimes
feedback connections from the perceptron to the reservoir are used to achieve
more stable dynamics (LukoSevic¢ius and Jaeger, 2009). In figure 2.4 the idea of
reservoir computing is visualized.

Input Neurons & Dynamic Reservoir A4 Dutput Meurons £

Figure 2.4: The principle of Reservoir Computing: the input is fed into a non-
linear dynamic system and the weights to the output neurons are trained to
obtain the desired results. In this case, multiple output units are defined, but
feedback is lacking. Reproduced from Oubbati and Palm (2010).

Interestingly, multiple versions of reservoir computing have been developed
independently, with the two best known versions being the Echo-State Net-
work (ESN) by Jaeger (2001) and the Liquid State Machine (LSM) by Maass
et al. (2002). However, the first to apply the idea of Reservoir Computing was
Dominey (1995). In fact, his research has so much in common with our own
that we will discuss this article and a recent follow-up (Hinaut and Dominey,
2011) in the literature overview. Here we will just describe the ESN and the
LSM to understand the basic principles of Reservoir Computing.

The ESN utilizes simple perceptron-type nodes in its reservoir and is there-
fore computationally relatively cheap. Its name derives from the “echoes” of
the input patterns that should be available in the network for readout. It gives
better performance than other types of recurrent neural networks on a couple
of tasks, most notably time-series prediction (non-linear autoregressive moving
average (NARMA) timeseries), e.g. Jaeger and Haas (2004). From the neuro-
science perspective, its main disadvantage is the lack of biological plausibility.
The LSM on the other hand mostly uses spiking neurons and is much more
related to accurate models of biological neurons. Its name derives from the
analogy of the reservoir with a basin that is perturbed by something falling
in. Because of the use of spiking neurons, rich dynamics can be achieved with
a reasonably small number of neurons. The main disadvantage of the LSM is

13



its computational cost, especially when more realistic neuron models are used.
Some work has been done to use a physical reservoir instead of a software reser-
voir to address this problem, e.g. Paquot et al. (2012). For an in-depth review
of reservoir computing techniques, see Schrauwen et al. (2007).

For reservoir computing to work, the reservoir should have some special
properties. First of all, the dynamics of the network should not be chaotic: it
would make the current state of the reservoir only dependent on the connectivity
instead of on the past input patterns. The network state should also not only
depend on the current input: the past input should still have a noticeable effect
on the network activity. This is referred to as the input separability of the
network. Thus, we need a reservoir that has a slowly fading “echo” of inputs.
In the ESN, this is called the Echo-State Property (ESP). For simple echo state
networks it has been shown that setting the spectral radius (which is the largest
eigenvalue) of the connectivity matrix smaller than one is a sufficient condition
to obtain the ESP. The precise setting of the spectral radius determines for
which tasks the reservoir will perform best (Jaeger, 2001).

This is in fact one of the weak points of reservoir computing: every applica-
tion requires tweaking of the reservoir. This point will be discussed further in
the literature review chapter. Nevertheless, thanks to reservoir computing the
domain of tasks that can be solved with recurrent neural networks is extended
a little bit more again, because it alleviates the difficulties with training them.
One of the tasks that ESNs can be used for is classification, which is why we
chose to use this class of recurrent neural networks.

2.3 Embodied Neuroscience and Robotics

For the construction of our model, we will keep application of the model for
a robot in mind. This serves two purposes: first of all, we may be able to
contribute to adaptive behaviour research with inspiration from neuroscience.
Secondly, a robot implementation can give new insights about the functions of
the PFC and the development of the PFC during evolution, by allowing in-
vestigation of real-life situations instead of the well-known psychological task
battery. We will here discuss the theoretical background of neuroscience em-
ploying robots.

Embodied and Embedded Cognition

Nowadays, cognitive sciences usually do not focus on the brain or control ar-
chitecture of an agent in isolation any more, but in combination with the body
and/or environment. In other words, cognitive sciences used to have a cogni-
tivist approach, but embodied and embedded (aka situated) cognition (EEC)
has gained influence (van Dijk et al., 2008). Still, the exact meaning of em-
bodiment and situatedness is not yet crystallized to a standard definition. As I
would like to argue that the proposed control architecture is in fact in compli-
ance with the EEC paradigm, it is important to investigate the exact meaning
of those concepts.

Situatedness means that we are interested in an agent that deals with an
environment. In case this environment is static, the agent can gather as much
information about the world as necessary and then leisurely make a plan of ac-
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Figure 2.5: The interactions between the brain (the top layer), the body (the
middle layer) and the environment (the bottom layer). Instead of considering
the brain in isolation, a better description may be obtained by investigating the
body and the environment of a subject as well. Reproduced from Pfeifer et al.
(2007).
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tion, as in the old sense, plan and act (SPA) approach. Most real environments
are not static though, introducing time constraints on the control architecture.
This means that agents have to make decisions and act without complete in-
formation and moreover, without too much planning (corresponding with the
situated, time-pressured and action-based cognition in Wilson (2002)). Thus,
an effective controller has to take the properties of its environment into account.

Embodiment means that an agent has a body: a physical implementation of
all its components in this world and therefore also a means of interacting with
the world (Pfeifer et al., 2007). Ziemke (2001) tries to give a broad classification
of the possible types of embodiment. Obviously, different means of interacting
with the environment lead to different behaviours and control strategies. An
efficient controller should therefore also be adjusted to the body of the agent
as well as to the environment. For our model, this immediately leads to an
important requirement: it should be computationally cheap, as we cannot fit a
robot with a supercomputer.

Combining the notions of embodiment and situatedness leads to even more
consequences. One of the most important results is a possible solution for the
grounding problem in GOFAI (good old fashioned artificial intelligence). See
the Chinese room example in Ziemke (2001) for an illustration of this problem.
EEC gives a solution to this problem because concepts can now be coupled with
the real world through sensations and actions. In this thesis grounding will not
be central, so for a review about this I direct the reader to Barsalou (2008) and
Anderson (2003). This corresponds to the body-based cognition that Wilson
discusses.

The most extreme interpretation of EEC is that it is actually a mistake to
make a boundary between the controller, body and environment of the agent,
because the links between those three are as important as the links within
them. This is the concept of the “extended mind” (Clark and Chalmers, 1998)
(which is listed as the fourth interpretation in the article by Wilson). This
interpretation is very interesting indeed, but many argue that it is too extreme.
A less extreme version of this idea is that cognition is a result of the interactions
between controller, body and environment, for example in the case of offloading
cognitive work onto the environment, which alters the task that the controller
has to perform (which Wilson splits into her first and third interpretation)
(Haselager et al., 2008).

Another important example of cognition arising from interplay between con-
troller, body and environment is a new way to look at perception. Instead of
only passively examining the input of our sensory system, we can also imagine
active perception now: using actuators to control what is perceived. One can
argue that active perception is in fact used all the time by animals, for example
when we track an object with our eyes. Nolfi (2002) does a good job at explain-
ing how powerful active perception can be and how it can solve the aliasing
problem. This problem is the result of the fact that a purely reactive agent will
always do the same thing in reaction to the same sensory input. So, what will
this agent do if the same sensory input can mean two things? The EEC answer
is that this agent should look for more information, which can be done thanks
to its actuators. In other words, “the world is its own best model” (Brooks,
1991a). This is in contrast with a SPA agent, which would solve the aliasing
problem by investigating its world model (for example, choose the solution with
the highest probability or build a plan to solve this problem).
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As we can now see, it is known that action selection and cognitive control
in general cannot be fully explained by only looking at the reaction times of
artificial tasks. This notion has not reached very far in neuroscience yet, even
though the idea has been around for a long time already (Chiel and Beer, 1997).
We will attempt to make a step in this direction by preparing for a robot im-
plementation of our model.

Robot Control

In robotics, the embedded and embodied paradigm is quite important since
Brooks criticized the sense-plan-act (SPA) class of robot controllers for its em-
phasis on symbolic planning (Brooks, 1991b). The main problems with SPA
architectures are the amount of resources that is required in the planning stage
and the difficulty of building the accurate world model that is necessary for
planning. Due to the large number of dimensions in even a quite simple envi-
ronment, making a plan to achieve certain goals can takes a very long time. All
this effort is wasted if the world model turned out to be inaccurate or if the
environment has changed in the meantime. One way to solve this problem is to
improve the planning stage; we will not discuss this line of research here, but
see for example Schut and Wooldridge (2001). Another solution is to do away
with planning: Brooks (1991b) proposed to use reactive robots instead: robots
with a control architecture that does not keep an internal world model and does
not make plans.

A good example of a reactive robot architecture is the subsumption archi-
tecture, which improves on the simplest reactive stimulus-response mappings.
The subsumption architecture consists of layers with simple behaviours (rather
tight input-output couplings), in which higher layers can block lower layers. It
can be argued that this mimics the way in which humans and animals perform
simple, but intelligent, behaviour. However, this approach has two problems:
firstly, when increasing the number of layers, there is no structured way of ar-
ranging the inhibition to attain the desired complex behaviour. This can be
countered by using evolutionary algorithms (Koza, 1994), but this has never
been demonstrated to be able to handle more complex situations®. Secondly,
the subsumption is all-or-nothing in its inhibition, while some situations are
better dealt with by integrating information in a continuous fashion and some
situations require lower layers to overrule higher layers. In other words, infor-
mation is lost because of higher layers inhibiting lower layers (Rosenblatt and
Payton, 1989).

Over the years, two acceptable and useful methods for robot control were
developed: hybrid architectures and behaviour-based architectures. Hybrid sys-
tems have a reactive bottom layer for fast, time-critical responses and a symbolic
top layer for long-term planning and the monitoring of progress. A middle layer
is necessary to combine these two antagonists, and that is were most effort is
focused (Gat et al., 1997). Note that such systems still have the problems that
planning effort may be wasted. For this thesis, behavioural systems are more
important: the direct descendants of the subsumption architecture, the control

3Common strategies in evolutionary algorithms, incremental and modular evolution, are
not guaranteed to work for the same reasons as design by hand cannot handle complex situ-
ations while designing subsumption controllers: it is not always possible to find a subdivision
of tasks that are unrelated and can therefore be designed or evolved independently.
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system consists of a number of behaviours. These behaviours are allowed to
influence each other as well as the motor output. Some of the behaviours can
also be used to store information about the environment, like a map for exam-
ple. Note that such a controller still lacks proper design principles for complex
behaviours and the way in which behaviours should influence each other (Arkin,
1998). A recent, flexible implementation is IB2C, which is illustrated in figure
2.6 (Proetzsch et al., 2010).

properties

of objects
Follow object

Turn to object |

relative
obstacle
position

Avoid collision j
Rotation Fusion

Figure 2.6: A fragment of a behavioural robot control system based on IB2C.
The fusion behaviour in the bottom of the figure collects turning suggestions
from the other behaviours and uses these suggestions to decide on the actual
motor commands. Inhibitory, excitatory and data connections are explicitly
separated. Reproduced from Proetzsch et al. (2010).

In Scheutz and Andronache (2004) a useful classification of behaviour-based
control architectures is given. The first distinction is the way in which the action
selection is handled. Action selection is simply the decision which action should
be executed at a certain moment, while there may be many competing proposals.
This can be solved in a cooperative and competitive way. In the competitive
case, the different behaviours compete with another, and the winner decides
what command is issued to the actuators. Subsumption is the obvious example.
Cooperative architectures on the other hand include a way to achieve command
fusion (or behaviour fusion). This can be implemented with a voting system,
fuzzy logic, simple addition or in still other ways. The second distinction is
between adaptive and non-adaptive systems. Adaptive architectures allow for
adjustment of behaviour selection strategies during the lifetime of a controller
instance (Wareham et al., 2011). Most architectures do not support such an
adjustment however and are called non-adaptive, of course.

Finally, we have to note that not all robot controllers are part of the classes
described above. Most notably, a large number of robot controllers are based
on artificial neural networks and more or less inspired by neuroscience (Lin,
1993; Erlhagen and Bicho, 2006). Often, the design of neural networks for low-
level control is obtained with artificial evolution (Floreano and Urzelai, 2000;
Baldassarre and Nolfi, 2009; Fernandez-Leon et al., 2009). Unfortunately, such
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controllers are in general hard to use again on different robots, on different
tasks, or to built more complex behaviours. Interestingly, only a few robot
controllers are explicitly inspired by models of cognitive control; probably due
to high computational demands of existing models. The few examples will be
discussed in the next chapter.

We can conclude that most natural tasks of the human brain are probably
not quite like the tasks that are in general used for psychology and neuroscience
research: the brain is embodied and embedded, which is often ignored in exper-
iments. One of the methods to extend neuroscience to situations in daily life is
to use robots. Therefore, we will keep the application of our model in a robot
in mind.
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Chapter 3

Literature Review

In this chapter we will discuss the articles that are particularly relevant for this
thesis in more detail.

3.1 Topological Mapping of Abstractions

Hierarchy and Abstraction

Our efforts are in line with a long tradition of research into hierarchical struc-
tures in behaviour and in the brain. Hierarchies of different abstraction levels are
required, because low-level information is too high-dimensional to take every-
thing into account at higher planning, association and learning levels (Lashley,
1951). Note that without planning and abstraction, it seems possible to learn
only automated stimulus-response mappings (see Dayan (2009) for a review
about the difference between rule-based learning and learning of automated re-
sponses). Numerous examples of hierarchical structures can be found in both
human behaviour (Fuster, 2008) and in brain structure, see figure 3.1. A sim-
ple example is the way in which we can interchange or adapt small chunks of
behaviours that we learned earlier to create new behaviours, e.g. learning to
make a sandwich with tomatoes after having learned how to cut tomatoes and
how to make a sandwich with cheese. Two important reviews on the subject
of abstractions are Badre and D’Esposito (2009) and Botvinick (2008). We will
follow the first in the identification of four types of abstraction for regulation
of behaviour: domain generality, relational integration, policy abstraction and
temporal abstraction (of which the last two are also identified by Botvinick
(2008)).

When the brain deals with representations that do not concern only exactly
this moment in time, but a longer time period, this is known as temporal ab-
straction (Fuster, 2001; Kiebel et al., 2008). This concept is very close to working
memory when studying the PFC. In the sandwich case, temporal abstraction is
required to keep the goal of making a sandwich in mind while cutting the toma-
toes. It is also important for the correct execution of action sequences, as is for
example discussed in Elman (1990). Tasks testing temporal abstraction are the
n-back test, 1-2 AX-CPT, which is an extension of the AX version of the con-
tinuous performance task, and the Store-Ignore-Recall (SIR) task (Osaka et al.,
2009; O’Reilly and Frank, 2006). In the AX-CPT, participants are required to
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Figure 3.1: Fuster’s hierarchy of brain structures, with fast and simple
perception-action loops at the bottom and slow and complex perception-action
loops at the top. Reproduced from Fuster (2002).

give one response to all trials, except when the preceding trial showed an A and
the current trial shows an X, in which case a different response has to be given.
In the SIR task, digits are shown in either red or black. In case the digit is
black, it should be read aloud but otherwise ignored (ignore). In case the digit
is red, it should be read aloud and kept in memory (store). Sometimes, an x is
shown instead of a digit, prompting the participant to say which digit he recalls
(recall).

Situations involving temporal abstraction often also involve policy abstrac-
tion'. Policy abstraction describes a relation between goal representations in
which the higher goal representation does not deal with motor commands di-
rectly, but only with other goal representations at lower levels. Again, this type
of abstraction is encountered in the example of making a sandwich: the goal
of having something to eat does not give you any information about the motor
commands that should be used to achieve this goal. However, it does influence
lower level goals, like finding bread and cutting tomatoes, that do give motor
commands. Moreover, it also prevents distracting information to influence your
behaviour: it could for example stop you from picking up that interesting book
that you still wanted to read. The Wisconsin Card Sorting (WCS) task is a test
for this abstraction type: the participant is shown cards with symbols that vary
in three dimensions: color, shape and quantity. The cards have to be sorted
according to one of these properties, while ignoring the other properties. Not
relevant for policy abstraction, but included in WCS, is that the participant has
to find out which dimension is relevant from error feedback.

Relational integration is the name for the relationships between representa-
tions. At the lowest level, this could for example be a property of an object. At
higher levels we can make comparisons between concrete properties and compare
relationships. A task testing this abstraction is for example a match /non-match
task. Finally, domain generality refers to representations that are used over dif-
ferent (input) domains. For example, “cutting” neurons can be active when

1Probably due to the fact that a person is in general doing only one thing at a time.
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making a sandwich, but also when preparing dinner. Therefore, the cutting
representation is more abstract than the cutting bread and cutting fish repre-
sentations. A test for domain generality could for example be a task in which a
left-hand response has to be given after hearing a sound and smelling something,
while a right-hand response has to be given after seeing or feeling something.

In the same review, Badre and D’Esposito (2009) discuss the structural or-
ganization of the PFC. Based on anatomical evidence from Petrides and Pandya
(2007), they argue that we can find a hierarchical structure with the FPC at
the top, the dIPFC and vIPFC in the middle, and at the bottom PMd and PMv
that in turn connects to M1. This structure is clarified in figure 3.2. Thus,
we can find a hierarchical structure in the anatomy of the human PFC and a
hierarchical organization of perception and behaviour in the functional domain.
However, it is very important to note that this does not necessarily mean that
the levels of both organizations map onto each other topologically. For example,
it could be possible that all information that is more abstract than basic motor
programs is processed in dIPFC. Therefore, we will now discuss the evidence
regarding a topological mapping over the PFC.
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Figure 3.2: The FPC (BA 10), IPFC (BA 9/46), PM (BA 6) and M1 (BA 4)
form a hierarchical system, with separate ventral and dorsal branches. Repro-
duced from Badre and D’Esposito (2009). Note that both Koechlin and Hyafil
(2007) and Badre and D’Esposito (2007) propose an extra level of abstraction
in posterior IPFC or BA 8, between anterior IPFC and PM.

Evidence for a Topological Mapping

By now, multiple research groups have reported that different levels of abstrac-
tion map topologically to different areas in the human PFC, with higher abstrac-
tion levels mapping to more anterior regions. Before these results were found,
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some information was already available from primate studies (e.g. Petrides
(1991) in which dIPFC and PM lesions are distinguished by the influence on
simple tasks: PM lesions gave problems with domain specific motor tasks while
dIPFC lesions gave problems with a domain general monitoring task). One
of the first publications proposing a rostrocaudal hierarchical organization in
human PFC is Christoff and Gabrieli (2000). This article contains a review
of fMRI studies in which FPC or IPFC are activated, and proposes that the
dIPFC is recruited for the evaluation of externally generated information, while
the FPC is recruited when internally generated information (e.g. information
in the dIPFC) has to be evaluated.

Not much later, specific studies were conducted to test these ideas directly.
One very influential fMRI study is Koechlin et al. (2003). The task that was
used comnsisted of trials in which the participant had to give a motor response
on simple visual input. Three abstraction levels were investigated by varying
the number of possible motor responses, the amount of information given by a
context cue and the amount of information given by an instruction cue in the
beginning of a block of trials. Varying the first factor resulted in differential
activation in PM, varying the second factor caused differential activation in
caudal IPFC and varying the episode factor activated rostral IPFC. This is
evidence for a topological mapping of policy and temporal abstraction (note
that the article uses the terms contextual and episodic abstraction instead).
Evidence for a hierarchical cascade was given by structural equation modelling.

A couple of research groups replicated the findings from Koechlin et al.
(2003), but all in a slightly different way. We will discuss the most important
studies here. Badre and D’Esposito (2007) varied the amount of competition
on the response level, the feature level (which is policy abstraction), and addi-
tionally, the dimension and temporal level. The dimension level is a relational
abstraction over the features, and the temporal level (which is called “context”
level in the article, not corresponding to the context from Koechlin et al. (2003))
consists of episodes with particular mappings of the dimension level. This is il-
lustrated in figure 3.3. The fMRI result for these four levels of abstraction
was that PMd, caudal IPFC, rostral IPC and FPC were respectively activated,
reasonably matching the results from Koechlin et al. (2003), see figure 3.4.
Krawczyk et al. (2011) also obtained similar results with relational integration
abstractions.

Christoff et al. (2009) chose to use words instead of simple visual cues in their
experiment, to directly test abstraction effects while controlling for the possible
confound of task difficulty in the other studies. The participants had to solve
five- and six-letter anagrams of words with a meaning of low, medium and high
abstraction. While the behavioural results were exactly the same over these
three categories, the fMRI results showed differential activation in respectively
the ventral PFC, dorsal PFC and rostral PFC. See figure 3.5 for a more exact
localization.

The most recent addition to the collection of fMRI results is by Reynolds,
O’Reilly, Cohen, and Braver (2012). The different abstraction levels were com-
pared directly with each other in five conditions: baseline, low temporal and
policy abstraction, high temporal and low policy abstraction, low temporal and
high policy abstraction and finally high temporal and high policy abstraction.
The low temporal conditions match more or less with the first two abstraction
levels of Badre and D’Esposito (2007) (see figure 3.3), and the high temporal
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Figure 3.3: The tasks used in Badre and D’Esposito (2007) and Reynolds et al.
(2012) (inset). The dimension experiment and the high abstraction task can be
represented in the same tree structure, but may be solved differently by humans
due to the different use of abstractions: in the dimension experiment, relational
integration is used as well as policy abstraction, while only policy abstraction
is used in the high abstraction task. Reproduced from Badre and D’Esposito
(2007) and Reynolds et al. (2012).

B Badre et al. (2007)
B Koechlin et al. 2003)

Figure 3.4: The results of Koechlin et al. (2003) compared with Badre and
D’Esposito (2007). While the subsequent abstraction levels give activation in
similar areas, it is not clear whether the results from the two articles are the
same. Reproduced from Badre and D’Esposito (2009).
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Figure 3.5: The results from Christoff et al. (2009). Anagrams with low abstrac-
tion showed activation in ventral PFC (a), anagrams with medium abstraction
in dorsal PFC (b) and rostral PFC was activated in the most abstract cases (c).
Reproduced from Christoff et al. (2009).
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and high policy abstraction condition matches more or less with the third ab-
straction level of Badre and D’Esposito (2007). The high temporal abstraction
and low policy abstraction matches with the episode factor from Koechlin et al.
(2003), while his policy factor is similar to the low temporal abstraction and
high policy abstraction condition. The results for a particular region of inter-
est in dIPFC are that it is least active in the baseline condition, shows most
activity in the high temporal and high policy abstraction condition and shows
comparable intermediate activity in the other three conditions.

Finally, for those not convinced yet, a lesion study also provided evidence
for a topological mapping of abstraction on the PFC (Badre et al., 2009). On
a similar task as in Badre and D’Esposito (2007), described above, the reaction
times of subjects without lesions and subjects with lesions at different locations
were compared. The results were that a lesion at a location impairs a specific
abstraction level, but also higher abstraction levels. These results were obtained
by finding weak correlations in a group of only twelve patients however, indi-
cating that we should still take some care with the interpretation. Nevertheless,
the results were significant, making it proper evidence for an actual hierarchical
organization instead of just a topological mapping.

Theories for Topological Mapping

These convincing results have led to a number of theories. The study by Petrides
(1991) suggested domain specific neurons to have a different location in the PFC
than domain general neurons, but this has not been tested in humans. Koechlin
et al. (2003) proposes a “cascade” model of cognitive control, with more anterior
regions influencing posterior regions step by step. This is illustrated in 3.6.
This theory is backed up by information theoretical measures (mainly mutual
information and entropy), although it seems almost impossible to investigate
these measures in the brain, apart from correlating it with fMRI activity or
reaction times (Koechlin and Summerfield, 2007). Due to the explicit notion of
episodic control, a large part of this theory is based on the handling of temporal
abstraction (Koechlin and Hyafil, 2007). However, the contextual information
in the cascade model matches policy abstraction.

Badre and D’Esposito (2007) proposes a theory that is related to Koech-
lin et al. (2003), by stating that the functional gradient in the PFC might be
explained by increasing abstraction levels in general, and in particular increas-
ing levels of policy abstraction. Just like Koechlin et al. (2003), Badre and
D’Esposito (2007) implicates FPC, IPFC and PM in this hierarchy. Christoff
et al. (2009) suggests that for relational integration, the set of areas in the hi-
erarchy are slightly different: the highest abstraction levels are again mapped
onto the FPC (in line with Christoff and Gabrieli (2000)), but the middle and
lowest level are mapped onto respectively the dIPFC and vIPFC. This difference
might be explained by the use of words instead of simple visual cues in the task.

Reynolds et al. (2012) used their own neuroimaging results to make yet
another proposal: the “adaptive context maintenance” hypothesis. According to
this hypothesis we should not assume a hierarchical, rostrocaudal organization.
Instead, we should be able to find both posterior and anterior PFC activity
for the duration that contextual information had to be maintained to perform
a task. Indeed, the imaging results they present do not seem to match the
previous two theories and can be explained by adaptive context maintenance
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Figure 3.6: The cascade model in which more anterior regions influence posterior
regions in a cascade of cognitive control. Reproduced from Koechlin et al.
(2003).

only. The article presents this hypothesis as an alternative for the two theories
discussed above, but may misguide the reader by doing so. Koechlin et al.
(2003) and Badre and D’Esposito (2007) do namely not discuss the way in
which information is maintained or updated and therefore do not contradict
Reynolds et al. (2012); in fact, “adaptive context maintenance” may even be
a logical extension to their theories. What remains is a neuroimaging result
that cannot be explained by the cascade theory or by abstraction levels, but
this could be caused by differences in the paradigm (e.g. the region of interest
or the particular task that was used). Therefore, this hypothesis seems to be
orthogonal to the two theories about rostrocaudal organization. The question
that remains is whether Reynolds et al. (2012) are right about the absence of a
hierarchical organization; our results will contradict this.

It is important to notice some subtle differences in the tasks of Koechlin et al.
(2003), Badre and D’Esposito (2007) and Reynolds et al. (2012). Koechlin et al.
(2003) uses a task similar to WCS for their policy factor: the context cue is used
to choose one out of two relevant stimulus dimensions. Badre and D’Esposito
(2007) on the other hand use their second level of abstraction (feature level) only
to invert the stimulus-response mapping. Then, in their third abstraction level,
the policy abstraction is replaced by relational integration and the extra level of
abstraction is a policy abstraction as in Koechlin et al. (2003). Reynolds et al.
(2012) use the two policy abstraction levels for inverting the stimulus-response
mappings. They also show that the task can be represented in a tree in the
same way as the third abstraction level of Badre and D’Esposito (2007); see
figure 3.3. However, this does not mean that the human participants solve the
task in the same way: in fact, the differences between abstractions is one of the
questions that is posed in Badre and D’Esposito (2009). A second problem is
that the use of policy abstraction to invert a stimulus-response mapping is not
intrinsically abstract: the “abstract” cue gives just as much information about
the response as the “less abstract” cue. Therefore, participants may solve this
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task without using two levels of abstraction?. All in all, it is not surprising that
the results show differences. This also means that until more these uncertainties
are resolved, we cannot directly use the imaging results to construct a detailed
model of PFC.

Considering the different proposals, the research groups seem to have matched
their theory to the specific task that was used in the imaging experiments. This
brings up the important question how the fragmented experimental results and
theories are related to each other and how we can best describe the structure in
PFC. In particular, we would like to investigate whether mapping of temporal
and policy abstraction can be explained by the task requirements of information
integration and preservation. To do so, we turn to a computational model.

3.2 Computational Models of Prefrontal Cortex

Computational models related to the PFC have quite a long tradition (see
Botvinick (2008) and O’Reilly et al. (2010) for an overview). Historically, the
most important distinction is between symbolic models and connectionist mod-
els. Symbolic models perform their function by using symbols for concepts.
Whether such a model performs action sequencing or reasoning, and whether
it is a neural network or a searching method, we can always pinpoint one part
of the model which defines the concepts that are used. In connectionist models
this is not the case: the used concepts are only described by a particular state
of the system; usually an activation or connection pattern in a neural network
(Rumelhart and McClelland, 1986).

First of all, we cannot write about computational models of the PFC without
mentioning cognitive architectures. These grand architectures aim to mimic all
aspects of human cognition or even consciousness. Their roots in GOFAI gives
most of them a solid symbolic foundation with elaborate logic and planning
schemes. A good example is ACT-R (Adaptive Control of Thought - Rational).
It has been used to simulate cognitive tasks and recently, also to predict fMRI
results of these tasks (Anderson et al., 1997). One other cognitive architecture
that is interesting is LIDA (Learning Intelligent Distribution Agent). This ar-
chitecture is not purely symbolic and in fact incorporates some ideas from EEC.
It includes a notion of consciousness and can be considered an implementation of
Global Workspace Theory (GWT) (Baars and Franklin, 2009). Unfortunately,
their computational requirements do not make cognitive architectures a good
candidate for autonomous robot control, and we will not discuss these models
any further.

Instead, we will describe more focused, neuroscience based models of PFC.
These can roughly be divided into four areas: performance monitoring and error
detection (Alexander and Brown, 2010), the (expected) reward and reinforce-
ment learning (O’Doherty et al., 2003), working memory in the PFC and BG
(Hazy et al., 2007) and models about action sequencing and action selection
(Botvinick, 2008). We will describe the studies that include ideas about the

2 An alternative strategy for the task in Reynolds et al. (2012) would for example be: start
with having in mind a right hand response. Switch if the first cue is blue, do not switch if
red. At the second cue, again, switch if 0, do not switch if 1. At the third cue, switch if X,
do not switch if Y. If the WCS task would have been used, as in Koechlin et al. (2003), such
a strategy would have been much less efficient than a strategy using abstraction levels.
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hierarchical organization of PFC.

Hierarchical Models of PFC Function

Hierarchical models of PFC function used to be mainly models of action sequenc-
ing (Allen et al., 2010; Dayan, 2009). They can be divided into instrumental and
correlational models. Instrumental means that the control rules are encoded as
means-ends relationships (e.g. I want to drink, thus I pick up a cup) while corre-
lational means that only the transition probabilities are encoded (e.g. I want to
drink, and drinking usually happens when picking up a cup). An example of an
instrumental model is presented by Cooper and Shallice (2000). They show that
their model is capable of organizing sequential, hierarchical behaviour based on
precoded action schemas. This is achieved in situations with about ten low-
level actions and about ten hierarchically organized high-level goals. They also
argue that the errors in their model in noisy conditions resemble human errors,
although this is not quantified. Also note that hierarchical behaviour is not
necessarily linked with a hierarchical PFC. Uithol et al. (2012) gives an elabo-
rate and insightful treatise on this subject, explaining how temporal abstraction
relates to action sequences.

The link between hierarchical behaviour and a hierarchical PFC is partly
established by Botvinick and Plaut (2004), in agreement with the ideas from
Uithol et al. (2012). They present a connectionist, correlational model that does
not require hierarchical schemas. Instead, the continuous time recurrent neural
network is trained by BPTT on a hierarchical task and learns to perform it.
An extension of this model that is very relevant for us, is given in Botvinick
(2007). Here, the CTRNN is assumed to have a hierarchical structure and
trained on a Store-Ignore-Recall (SIR) task and an action sequence, which have
multiple timescales. This includes policy and temporal abstraction. Thanks
to the structure of the task, it is possible to assess which part of the network
processes the longer timescales. As we might expect by now, it turned out that
the longer timescales were handled by the top part of the network (note that the
time constants were the same throughout the network). Thus, in this model the
levels in the action hierarchy are in fact coupled to the hierarchy in the network
topology.
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Figure 3.7: One of the networks investigated by Botvinick (2007). When trained
on a task with temporal abstraction, the longer timescales were handled by the
higher layers. Reproduced from Botvinick (2007).
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Very interesting are also the articles by Dominey (1995) and Hinaut and
Dominey (2011), in fact the first example of reservoir computing and a recent
continuation of this line of research. In Dominey (1995) rather elaborate letter
sequences are learnt by a recurrent neural network, that has a topology explic-
itly based on PFC and BG structure. The nodes representing the PFC even
have different time constants and it is noted that this increases the robustness
of the performance, although any structure in the PFC was not investigated.
Reading this article is highly recommended. Hinaut and Dominey (2011) give
a computational account of sequence categorization: as we noted before, ab-
stractions are necessary to deal with large numbers of possibilities, in this case
possible sequences. This can be considered relational integration of temporal
abstraction. A recurrent neural network with three layers, corresponding to the
infragranular, granular and supragranular layer, was trained to repeat presented
sequences. The result is that some nodes in the recurrent neural network show
sequence categorization, matching measurements from primate PFC.

A model that did not originate from action sequences, but from working
memory research is the PBWM (PFC BG Working Memory) model by Frank
et al. (2001). The structure of this model is illustrated in figure 3.8. It is
based on the reported loops between the PFC and BG (see section 2.1). The
topology is quite similar to the one in Dominey (1995), but the model functions
differently: through so-called adaptive gating in which the BG update PFC rep-
resentations. The model has been shown to solve working memory related tasks
and is compared with competing architectures by O’Reilly and Frank (2006).
For us, the most interesting study using this model is Reynolds and O’Reilly
(2009): they show that tasks can be learned faster when abstraction levels are
processed topologically in a hierarchically structured network, compared to a hi-
erarchically structured network in which the abstraction levels are not processed
topologically. Note however, that when the PFC network is not structured hi-
erarchically (and abstraction levels are not processed topologically), learning is
finished even faster and the performance better.

Finally, we have to mention a small model that was explicitly inspired by
Koechlin et al. (2003). Koechlin and Hyafil (2007) describes how a recurrent
neural network inspired by FPC can be used for branching: a temporary lapse
from the current episodic context to a new one, to return when the new episode
is over. While branching is an interesting idea and a form of temporal abstrac-
tion, the model does not seem to prove anything: it is not surprising that a
recurrent neural network of slight complexity supports such a task. Perhaps fu-
ture invasive recordings can validate or invalidate this model though. Anyway,
for us this model is not very interesting, because it does not implement lower
levels of the hierarchy proposed by Koechlin et al. (2003).

All in all, with all these different results, we still do not know how the ab-
stractions are different from or similar to each other and why exactly it could
be an advantage to map abstraction levels to PFC areas. It could be an ad-
vantage for learning, as described in Reynolds and O’Reilly (2009), allowing for
faster or easier re-use of policy abstractions or perhaps for input targeted at a
specific abstraction level. It could also be an advantage for cognitive control, as
described in Botvinick (2007): higher temporal abstraction levels should not be
disturbed by what is going on at lower levels and should therefore be located
at a larger distance from input nodes. Or following Koechlin et al. (2003), high
level concepts do not carry any information that can directly be used for the
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Figure 3.8: One (non-hierarchical) version of the biologically plausible PBWM
model. Each small rectangle is a neuron and is part of a specific brain network.
This system can be trained to perform rather complicated tasks. Reproduced
from Hazy et al. (2007).

output, and should therefore be located at a larger synaptic distance from the
motor areas. Note that these ideas make the implicit assumption that shorter
connections are better than longer ones (which is an embodied argument), if
they are to explain the evolutionary development of the PFC.

A problem is that all those models were used to solve artificial tasks, just like
the subjects of the imaging experiments. This are not the tasks that have given
the brain its structure and may overlook some important insights. Therefore,
we also look at robot control systems and models.

Efficient Cognitive Control for Robots

The advantage that a hierarchical control system has for robots is that it is
more efficient than a controller without abstraction (van Dijk et al., 2011). Due
to the complexity of the real world this efficiency is often even a necessity,
explaining the popularity of hybrid robot controllers and adaptive behavioural
systems (Scheutz and Andronache, 2004). One idea that had a large influence
on the current study is regulative control (Lagarde et al., 2010). This is a
subsumption architecture with an adaptive layer that can change which layers
are active in a particular situation, implementing policy abstraction. This gives
a computational advantage over controllers that do not use abstraction. Apart
from regulative control, a number of other studies are relevant for this thesis.
To start with the most important article, Paine and Tani (2005) used a
CTRNN to show that a small fully connected network is less successful in a
maze navigation task than a network with a bottleneck in the middle (with
the same number of nodes). The more abstract input of the goal in the maze is
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given at the top of the network, while sensory input is given at the bottom of the
network. This architecture is illustrated in figure 3.9. An EA was used to train
the weights of the connections and time constants so that the simulated robot
could drive to the desired goal position in the maze. Apart from the performance
difference, it was also found that the time constants at the top of the network
were larger than the time constants at the bottom of the network. This result
does give a possible explanation for the development of a hierarchical structure
(although this was not tested directly), but does not explain why the long term
input is offered at the top of the network, while the sensory input is given at
the bottom of the network. It is also not tested how the bottleneck network
would perform if the information was not presented and processed topologically
or whether the sparsity of the network influenced the results. Maniadakis et al.
(2010) used the same network for robots that can solve a WCS task.
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Figure 3.9: The CTRNNs that were investigated by Paine and Tani (2005).
Reproduced from Paine and Tani (2005).

The study conducted by Yamashita and Tani (2008) resembles the study
by Botvinick (2007), but now a real robot is taught to handle an object. A
CTRNN is organized hierarchically by coupling three sections with different
time constants: an input-output layer, a fast context layer and a slow context
layer. BPTT is used to teach the network the desired joint angles for a number
of overlapping action sequences. Yamashita and Tani (2008) also show that
motor primitives are re-used for the overlapping parts. Unfortunately, again
the question of whether or how the hierarchical structure is actually beneficial
is left untouched.

Another interesting robot controller is presented in Prescott et al. (2006),
inspired by BG models like PBWM. Discrete actions are defined as in a be-
havioural system, but the action selection process is driven by a BG model.
The model is tested on real robots doing a couple of tasks, and shown to give
good action selection results. While it gives an idea about how a neuroscience
model can be implemented and tested in robots, it does not include an account
of PFC. Another quite detailed model is presented by Khamassi, Lallee, Enel,
Procyk, and Dominey (2011) and focuses on ACC and IPFC: an iCub was taught
a simple game in which a human could change rewards. Eventually, the robot
learned to change its behaviour after human intervention.

All in all, the number of models of PFC function is considerable, but the
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number of robot controllers inspired by it is quite small. Although we were not
able to create a robot controller ourselves, we would like to keep this application
in mind while building our model. We can combine some good ideas from the
robot controllers and PFC models described above to do this efficiently. One
of those ideas is to use an echo state state network to model PFC, similar to
Dominey (1995).

3.3 Echo State Networks

As the reader may have noticed, most of the models use either BPTT or RL for
training. We chose however to use an ESN because it is computationally cheap
compared to other neural network methods and is therefore more suitable for
autonomous robots. Thus, reviewing the current state of affairs in ESN research
will help us with the construction of our model. As described in the previous
chapter, ESNs have been established as a good method for timeseries prediction
and also for some classification problems. As ESNs are a reasonably new de-
velopment, these first applications are still under investigation (see for example
Zhang et al. (2012)). However, a couple of other applications and research di-
rections have been investigated as well. We will discuss four developments that
are interesting for us.

First of all, quite some effort was spent to attempt to make ESNs work
on different time scales. This is important, because our model should work
over different time scales (levels of temporal abstraction). Most notably, Jaeger
himself wrote one report about discovering features on multiple time scales
with a hierarchical architecture (Jaeger, 2007a), which is illustrated in figure
3.10, and collaborated on a technical report about ESNs that can handle time
warping (LukosSevicius et al., 2006). As far as we are aware, the hierarchical
architecture was never applied on more problems than the simple examples
described in the technical report, so we can unfortunately not determine how
good its performance is. Also, the precise design of the architecture requires
closer investigation, according to Jaeger in his conclusion. The “time warping
invariant” ESNs are made with leaky integrator neurons of which the time
constant can globally be adapted to the speed of the input signal. These leaky
integrator neurons bring the ESN closer to a CTRNN compared to the discrete
time steps that are usually used. In Jaeger et al. (2007), ESNs with leaky
integrators are used for classification of audio recordings of vowels and the ideas
about its advantages and use for time warped signals are discussed (more clearly
than in LukoSevicius et al. (2006)).

Secondly, structure in ESNs has received attention as well. We will roughly
model the structure of PFC, making this direction relevant. Apart from afore-
mentioned hierarchical system by Jaeger (2007a), Xue et al. (2007) is a good
example. Their method is based on a number of separate ESNs and a lateral
inhibition system. The different ESNs receive the same input, but the lateral
inhibition system assures that the networks process different features. The re-
sulting network gives better performance and better robustness with respect to
the exact initialization of the random connection weights. Another study that
is worth mentioning is Jarvis et al. (2010). Here, the ESN was initialized to be
more or less clustered and the effect on the echo state property investigated.
It was shown that clustered ESNs allow for larger spectral radii to still show
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the echo state property, while more homogeneous networks required a smaller
spectral radius to maintain stability. Other suggestion include altering the con-
nections in the reservoir to improve on the random initialization of the ESN
(Sussillo and Abbott, 2009; Dutoit et al., 2009) and “scale free highly clustered
ESNs” (Deng and Zhang, 2007). Alse see Kaiser and Hilgetag (2010) for a more
general study about the relation between network size, modularity and stability.

Thirdly, ESNs have been applied for robot control, as we designed our model
for. Apart from applications in which the ESN was responsible for the inverse
model of motor actions (e.g., Ploger et al. (2004)), ESNs have also been applied
for motor control (e.g. Salmen and Ploger (2005) and Morse and Aktius (2009),
a very interesting combination of ESN and Adaptive Resonance Theory for
classification of input patterns). Perhaps the most promising studies to date are
Hartland and Bredeche (2007) and Waegeman et al. (2009). In these studies,
ESNs are used for learning by demonstration of motor actions, showing good
results. Waegeman et al. (2009) uses a hierarchical ESN: the bottom layer is
used to learn the basic goal seeking and obstacle avoidance behaviours, while
the top layer afterwards learns to coordinate these two behaviours. Another
interesting application can be found in Antonelo and Schrauwen (2011). In this
study, the ESN is used to non-linearly process input signals from a robot. The
output of the network is then learned by an unsupervised slow feature analysis
(SFA). The final result is an autonomous robot localization system, analogous
to hippocampal place cells in animals.

Finally, at least one research group has trained the output weights of ESNs by
artificial evolution (Jiang et al., 2008; Devert et al., 2008; Hartland et al., 2009).
They found that for a simulated motor control task an evolutionary algorithm
can outperform the standard learning procedure under certain conditions. This
is an interesting development, as it allows ESNs to be trained unsupervised. A
slightly different approach is taken by Krause et al. (2010): they use an EA
to find the optimal settings for the parameters of the reservoir. These studies
suggest that the large field of evolutionary neural networks may be extended
with ESNs. There might be two advantages compared to other methods (like
NEAT for example): because only the output weights have to be learned the
algorithm might converge to a good solution quickly (Devert et al., 2008) and it
can be integrated easily with behavioural robotics. These two advantages might
make it a good candidate for online evolution in robots; see the future research
section for further elaboration.

The most important points to keep in mind are that standard ESNs do
not work well when the task involves multiple timescales and that structure
in the ESN may change the properties of the reservoir. This will help us to
construct a structured ESN that can handle multiple timescales. With this
ESN, we can investigate whether the requirements of information integration
and preservation in cognitive control tasks can explain segregation of abstraction
levels, as has been measured in the PFC in a number of fMRI studies.
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Chapter 4

Methods

In this chapter, we will describe how we used the information from the literature
to construct our ESN and define its tasks.

4.1 How Brain Structure Can Support Tasks

As stated in the introduction, we hypothesize that control tasks that involve
policy or temporal abstraction both require information preservation between
the abstraction levels and information integration within the abstraction levels.
We will use an Echo State Network to investigate this claim, as will be detailed in
the following sections. However, even if we can confirm this hypothesis, we still
have to make the step to mapping of abstraction levels in the prefrontal cortex.
Thus, we will present two lines of thought here that make this step plausible:
the first argumentation requires the ESN to be a direct model for PFC, the
second and main argumentation uses the ESN to confirm our hypothesis and
explains how this leads to the mapping of abstractions in the PFC.

If we assume the ESN to be a model for PFC, we have to align the random
connections in the ESN with the far from random axon growth in the PFC.
This is easier than it may seem: good performances in a random ESN imply
that the targeting of axons in the PFC can be relatively inaccurate (closer
to random) without endangering its functionality, compared to a situation that
corresponds to a weak ESN performance. As a rather large number of axons has
to grow in the PFC, less accurate targeting can save effort and resources (time,
space, energy and materials (Sporns, 2010)). Thus, a PFC with a structure
that corresponds to the better performing ESN may have a small evolutionary
advantage, because it may take slightly less targeting effort in the PFC to obtain
the same performance. The weak points of this argument are that it is not
certain that the structure in an ESN has the same effect on performance as the
structure in PFC and, related, that it is not clear how accurate or inaccurate
axon growth is (O’Donnell et al., 2009).

Therefore, our main argumentation does not interpret the ESN as a direct
model for PFC; instead, we only use it to support our hypothesis that cognitive
control tasks that involve policy or temporal abstraction share the requirement
of information preservation between the abstraction levels. Thus, we have to
make a second step and answer the question why the PFC can better integrate
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information within an area and better preserve information by segregating it
spatially. It is most likely that for integration of information more connections
are required than for keeping information separated. Therefore, the total axon
length that is required in the PFC is smallest when information is integrated
within each area, and preservation of information is obtained by processing it
over different areas. That total axon length is in fact minimized by evolution
is known as the wiring economy principle (Allman and Martin, 2000; Cherniak,
1994; Sporns, 2010) (note that this is also an excellent example of embodied
neuroscience). Thus, if we can confirm our hypothesis, we can also explain the
topological mapping of abstractions in the PFC.

4.2 Network Architecture

Echo State Networks do not inherently have the possibility to control the loca-
tion of processing: the input activity spreads over the whole network. However,
to assess the influence of topological processing of abstraction we do want to
control the place where information is processed. The solution is to control the
way in which input is presented to the network: if we connect all input nodes
to all parts of the network, no topological processing will be possible. After all,
all input information will already be mixed by overlapping input or otherwise
very quickly be mixed due to the random connectivity. If one input node is
connected to a different part of the network as the other input nodes however,
this can lead to a degree of topological processing. The two input methods are
illustrated in figure 4.1.

To ensure that coupling input nodes to different parts of the reservoir in
fact leads to topological processing, we divided the reservoir of the ESN in two
clusters: a ‘top’ cluster and a ‘bottom’ cluster. To enhance the information
preservation in the top part of the ESN, we removed the connections from the
bottom to the top part of the network, while the information preservation in
the bottom part of the network was enhanced by tuning down the strength of
the random connections from the top to the bottom part of the network. The
random connectivity in each cluster was left untouched, to ensure the informa-
tion integration capability within each cluster. What is left is a 'top’ cluster
that influences the "bottom’ cluster but does not receive connections from it. As
may be clear already, in the case of separated input nodes, the more abstract
node was coupled with the top part of the network while the other nodes were
coupled with the bottom part of the network. The activities of the bottom part
of the reservoir were used to train the output nodes. This creates a hierarchy
as proposed by Koechlin and Hyafil (2007). When the identification and pro-
cessing of input is seen as a process separate from top-down control and action
selection, this architecture is also compatible with other models, for example
those proposed by Botvinick (2007) and Fuster (2002).

Special attention has to be paid to the time constants (or leaking rates)
in the reservoir. As the output changes on the timescale of one trial (which
means one input pattern and a fixed number of timesteps), the time constants
in the bottom part of the reservoir have to be fast. The time constants in the
top part of the network do not have this restriction and are initialized to a
broad range of values that supported the timescale of the task at hand. Thus,
for investigating policy abstraction, the top and bottom part of the network
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Figure 4.1: The architecture of the Echo State Network. In pink and yellow the
two input methods, seperated and uniform respectively. In blue the hierarchical
topology fashioned after the Prefrontal Cortex. Apart from the constraint on
the topology, the connectivity is random. In grey the output nodes for which
the weights are trained.
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covered the same range of time constants, while the time constants of the top
part were slower when investigating temporal abstraction (both for the uniform
and the separated input connections). Note that this introduces yet another
aspect in the hierarchy of the ESN in the tasks involving temporal abstraction.
Different settings of time constants were investigated to obtain the best overall
performance; note that the resulting differences in performances between the
input methods were unaffected.

4.3 Tasks

In the previous sections, we described the structure of the ESNs we will use
and that we would like to find performance differences between an ESN with
separated input and an ESN with uniform input. These performance differ-
ences will tell us whether information integration and preservation is a factor
in cognitive control tasks that involve abstractions, as we hypothesized. Thus,
it is of importance that we clearly define such tasks. Because we would like to
explain the imaging results, our tasks are inspired by and very similar to the
tasks that subjects were required to do in the fMRI scanner. We chose the two
most studied abstraction types: temporal abstraction and policy abstraction.

Abstractionless Task

A simple abstractionless task was chosen to give a baseline for the ESN per-
formance and to serve as a basis for the abstract tasks. In good psychometric
tradition, the tasks consisted of a number of trials and the task performance
was measured as the number of correct responses divided by the total number
of trials. At the first time step of each trials, an input pattern was presented to
the artificial neural network. Using a look-up table, the input pattern uniquely
determines the desired output. After a fixed number of time steps, the output
of the network was determined by a simple winner-takes-all comparison between
the activation of the output nodes. If the most active output node corresponded
to the desired output, the response was correct; in all other cases the response
was labelled incorrect. At the next time step, the next column of the design
matrix was used to initiate the next trial. Note that the network activities were
not reset between the trials.

A real-world example of this task is a classification problem with a small
number of binary inputs. A robot could for example classify the current context
each second by using the amount of light in the environment (day or night), the
battery status (empty or full) and the acoustic conditions (silent or just heard
some noise). This classification could then be used to select the behaviours that
are most appropriate in each context, for example a “find out what happened”-
behaviour when it is night, the battery is full and the robot just heard some
noise.

Temporal Abstraction

The task without abstraction is readily extended to a task with temporal ab-
straction: one input node is selected to be more abstract than the other nodes
and the node’s row in the design matrix is subsequently moved a certain number
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Figure 4.2: A simple task without abstraction that is used as the basis for the
tasks in the simulation. At each trial, each input node assumes either a high
state or a low state. The sequence of these input patterns over all the trials is
stored in the design matrix. A look-up table is used to determine which output
node is associated with a specific input pattern.

of trials towards the past. This is illustrated in figure 4.3. The result is that the
current value of this node has to be used to find the correct output a certain
number of trials in the future, instead of finding the currently expected output.
To solve the task, the ESN therefore has to “remember” the input values for a
certain period, quite similar to a person doing an n-back test.

The most obvious case of this task happening in real robots is when some
perceptions are processed faster than others. In this case, information with a
small time difference has to be integrated. For example, it may be obvious
immediately whether it is day or night, but it may take a while before it is clear
whether anybody is coming in your direction on the street using either vision or
sound. Then, the robot should remember for a short time whether it was light
or dark at a certain moment and then integrate this with the information that
is coming in later. Longer time spans may also be required, for example when
the robot somehow receives a message that means “pay attention for the next
ten minutes”.

The condition that will be varied in this task is the length of the temporal
abstraction. If our hypothesis is correct, and separating abstraction levels in this
task helps by preserving information, the ESN with separated input connections
should have a benefit when the task covers a longer timespan. Reversely, when
the task is easier, such as a 1-back task, preservation of information is less
important than integration of information and the ESN with uniform input
should have an advantage. Note that a result in which the performance of one
of the input methods is better in all conditions is not useful: how much better
it is may depend on our performance metric instead of the difference in the task
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conditions. Thus, merely comparing the performance differences cannot confirm
our hypothesis if all these differences are either negative or positive. Instead,
we need a change in the sign of the differences over the range of conditions.
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Figure 4.3: The implementation of the temporal abstraction used in the simu-
lations. The design matrix and output matrix are built using the task without
abstraction described before. The temporal abstraction is then achieved by pre-
senting the relevant bit from one of the input nodes a number of trials earlier
than the data at the other input nodes. In the figure a delay of five trials is
shown. Thus, each trial one column of the design matrix is presented, but to
obtain the desired output, the bit that was presented at the first output node
five trials ago has to be used instead of the bit that is presented at the first node
currently. This design leads to a chance level of 50 percent when the bit from
the first input node could not be remembered, while the other input bits could
be successfully integrated.

Policy Abstraction

To obtain a task with policy abstraction, a slightly larger change has to be
made. Instead of coupling each input pattern uniquely with one output node,
we now allow ourselves to couple input patterns that are partly the same with
one output node. This way, we can choose one input node that is important
for all of the trials and is more abstract, while the other input nodes are only
important in half of the trials and are less abstract. Which set of input nodes
is important for the current trial is then of course determined by the abstract
input node. This is similar to the sorting part of the Wisconsin Card Sorting
(WCS) task: we have to base our sorting or classification on only part of the
cues we get, while the rest of the cues are mere distractors. Alternatively, a more
computer science-minded person may prefer to understand this task by noting
that the distractors can be implemented by using wildcards in the look-up table.
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The task is illustrated in figure 4.4.

A real-world example of this task could be crossing a street. If it is day
(input one, the context), the most accurate information will be visible input.
If the robot can see something big heading its way (input two, the relevant
cue), it should not cross the street. If it is night on the other hand (different
context input), the most important information is audio input. If the robot can
hear somebody coming (input 3), it should not cross the street, ignoring any
unreliable visual information (input two is now a distractor).

The condition that will be varied in this task is the number of low-level
cues that are presented (and therefore also the number of output nodes). If
our hypothesis is correct, and separating abstraction levels in this task helps by
preserving the more abstract information, the ESN with separate inputs should
have an advantage on tasks with a large number of low-level cues. When only a
small number of low-level cues has to be integrated, the preservation of the high-
level cue is not very important and the ESN with uniform input should perform
better. Again, only by showing that the performance difference changes sign
when comparing the conditions with a small number of low-level input nodes
with the conditions with a large number of input nodes, we can confirm our
hypothesis.

Input 0101270010100 1F80 10111010
nodes
data 010001091101 000881 60101100

000 1 3049 0 1:°0°1 00 61 el 1 0 1 000 01

0 0 il 1
Lookup 0 1 X X
table X X 0 1
a b c d
Output
target dcadecdabcacaadi@bdadececbeca

_— =
Time (one column per trial)

Figure 4.4: The easiest version of the policy abstraction task used in the simu-
lations. The x in the lookup table is a wildcard: the input can be either high or
low, it is irrelevant for the task and thus a distractor. The number of outputs
for this task equals 27! with n the number of low level cues per context. This
brings chance level to 50 percent when the abstract cue cannot be integrated
with the rest of the cues, and to 2~("*1) when none of the cues can be integrated
due to the distractors.
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4.4 Learning

Now that we know the architecture of the network and the task, we can describe
how the network will learn the task. As with most applications of ESNs so far,
we will use linear regression. Let d be the vector with the successive desired
values of one output node and let S be the state collection matrix: a matrix in
which each row is filled with the state of the reservoir at the successive trials.
Then we have to find the best solution to the following equation:

d=Sw+e

With @ the output weights for this node and e the error. The method we use
to solve this is by minimizing the sum of squares of €, which is linear regression
and can be done with the following equation:

@ = STd

With the dagger denoting the pseudoinverse. Obviously, this can be extended
to multiple output units and a weight matrix. While this method was sufficient
and effective for our current application, better performances may be obtained
by using more sophisticated regression methods. Regularization for example
may reduce the effect of uncommon distractors by favouring smaller weights. A
simple way to do this would be to use ridge regression instead of linear regression
(Jaeger, 2007b). Also note that linear regression procedures are more suitable
for timeseries prediction than for the binary classification problem we try to
solve; therefore, logistic regression might also give a significant improvement.

4.5 Network Dynamics

While the dynamics of the reservoir can in principle be arbitrary, choosing a
good reservoir for the task can make the difference between performance at
chance level and performance that rivals state of the art methods. Here we
discuss three choices that concern the dynamics in our reservoir: the use of time
constants or leaking rates, the activation function, and the way the input is
added to the network activation.

Continuous Time Echo State Network

The first ESNs were recurrent neural networks in discrete time, with updating
steps according to equation 2.1. This method works perfectly for timeseries
prediction when only one timescale is of importance and the output depends
critically on inputs at very specific points in time. However, for classification
problems, the specific point in time of a feature may vary, leading to the intro-
duction of ESNs with leaky integrator neurons (Jaeger et al., 2007). These are
more capable of dealing with small variations in timing and have been shown
to perform very well on a vowel classification task, using the following updating
equation: . . . .

Anew = (1 —a) Agla + f(W Agla + @ + b) (4.1)

With a the so-called “leaking rate”, which is constant for the whole network, and
i the input to each node, which is calculated using an input weight matrix. In
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practice, the leaking rate is chosen to be rather large, between 0.1 and 1 (which
corresponds to a discrete time ESN). When we compare this to the updating
equation (using Euler integration and At =1 ) for Continuous Time Recurrent
Neural Network (CTRNN), we note a striking similarity:

. 1. - 1 S
Anew = (1= =) Ao + — (W f(Aoa + ) + 4) (4.2)

Obviously, this approximation of continuous time is only reasonable if the time
constants 7 are large enough; a general rule of thumb is that they should be
larger than ten times At, which comes down to larger than ten in the formula
above. Thus, apart from the different order of applying the activation function
and the weight matrix, the leaky ESN corresponds to a coarsely integrated
CTRNN.

Of course, we now have to find an answer to the question how we should
define our own updating equation. For this choice, the most restricting aspect
of our tasks is that it should be possible to cover multiple timescales. Also, we
would like to achieve tolerance for timing differences and noise. Discrete time
ESNs are thus not the ideal solution for our network. Although it would be
possible to introduce different timescales by using different sampling rates, or
by creating a hierarchy of reservoirs as Jaeger (2007a) did, timing differences
will probably still cause problems. Therefore, we turn to leaky integrator ESNs.
However, a critical disadvantage of this solution is that the leaking rate is fixed
for the whole network. While in principal it is possible to create a semi-discrete
time network with different leaking rates, in practice this solution turns out to be
not very effective (according to Jaeger et al. (2007) and our own observations).
This is probably caused by the fact that the approximation to continuous time
is insufficient.

Thus, we will use a leaky integrator ESN with very small leaking rates to
approximate continuous time better than usual leaky integrator ESNs. As this
corresponds so well with the existing CTRNN equations, we decided to explicitly
match our update equation to them with respect to the time constant, yielding
a Continuous Time ESN (CTESN):

1
T
¢ <0.1
Apew =(1 = &) Aga + G+ Tf(W Aoq +b) (4.3)

Again, with the operations working elementwise. The reason that the input is
added directly to the activation is discussed in the subsection “input method”.
This formula leads to a more well-behaved and transparent handling of multiple
timescales, also increasing the performance in some circumstances. Also, we
maintain at least the biological basis of the neural network instead of making a
purely abstract model with a standard ESN. However, we also have to accept
two downsides: the amount of computation is multiplied about tenfold, and in
tasks that have a single timescale, performance is greatly reduced compared to
a leaky integrator ESN with a leaking rate tuned to the problem.

The updating equation for the CTESN has some interesting influences on
the dynamics of the reservoir as well. The standard ESN dynamics are best

5:
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understood by examining an ESN with a linear activation function. Each time
an input is given, it is stored in the network in a specific scale and pattern
depending on the input weights. At the next timestep, these values are stored
in another pattern and slightly scaled down (because the spectral radius of W
is smaller than one). This way, each input over the past timesteps is retrievable
by the output layer. When we change the activation function to be a tanh, the
principle is exactly the same, except that large values are not stored linearly,
making non-linear behaviour possible. However, as you may have noticed, these
dynamics are dependent on the coarse euler integration of the network: only
because of this coarse integration it is the spectral radius that determines the
duration of the echoes. Without this overshoot the network returns to the fixed
point much faster and input separability quickly becomes very small.

This explains the reduced performance in CTESNs and leads us to the ques-
tion how CTESNs can perform at all. The answer is that the information is
stored in the slowly changing activation value of specific nodes, instead of in a
fast changing pattern (Schrauwen et al., 2007). Clearly, this is also the reason
that small differences in timing of input signals do not degrade the performance
very much: the difference in activation will be small. Also, this brings to light
another advantage of CTESNs over other types of ESN: the memory length
is not limited by the reservoir size but only by the leaking rates of the nodes
that are included in the reservoir. To conclude this discussion, an overview of
different ESN types is given in table 4.1.

’ ESN \ Discrete Time Leaky Integrator \ Continuous Time
Storage Fast changing pat- | Patterns and acti- | Slowly changing
terns vations activations
Tasks Timeseries predic- | Vowel classifica- | Action sequences,
tion tion context classifica-
tion?
Input Timing | Critical Intermediate Relaxed
Input seper- | Good Intermediate Poor
ability
Timescale Determined by | Sampling rate and | Multiple
sampling rate tunable by leaking
rate
Computational Low Intermediate High
Cost
Memory Limited by reser- | Limited by reser- | Limited by leak-
Length voir size voir size ing rates

Table 4.1: The differences between discrete time, leaky integrator and continu-
ous time ESNs.

Activation Function

In the updating equation 4.3, the activation function is left unspecified. Two
common choices for the activation function of nodes in recurrent neural networks
are the tanh and the sigmoid (more specifically, the logistic function). The
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difference between those two activation functions is interesting, as the formulae
are quite similar. The difference that is important in the ESN setting is that
logistic nodes give 0.5 output when no input is present, while the tanh nodes
give 0 output in that situation. That means that the stable fixed point without
input is just the zero state in case of tanh nodes, while this is not the case for
sigmoid nodes: due to the nodes giving some output, some nodes will have a
higher ‘base’ activation than others depending on the input weights of each node.
The result is that sigmoid nodes have a built-in bias, which can result in richer
dynamics of the ESN. Indeed, random biases are often added to tanh networks
to achieve the same richer dynamics (Vytenis Sakenas, personal communication,
February 27, 2012).

The obvious question is whether the logistic and tanh activation functions
actually have different dynamics. To answer this question we will construct two
networks that have a corresponding activation to begin with and calculate the
activation at the next timestep. First we have to look up some definitions; the
well-known relation between the tanh function and the logistic function is:

tanh(z) = 2G(2z) — 1
with
1

A )

the logistic function.
This relation is not hard to derive yourself:

exp(z) —exp(—z) 1—exp(—2x)

tanh(z) = exp(z) + exp(—z) 1+ exp(—2z)
_ 2—1—exp(—2z) 2 4
1+ exp(—2x) exp(—2z) +1
= 2G(2z) — 1

Now suppose that at a certain time the activation vectors of the tanh and
sigmoid networks are given by

Etanh = 2jsigm - f (44)

This is possible because the ranges of activation are (—1,1) and (0,1) respec-
tively. If we can show that the activation in the networks at the next timestep
fulfil the same relation, it means that the dynamics of the networks are equal.
So, we will calculate the activation vector at the next timestep (labelled "new”)
for the tanh network using the updating equation 2.1 and try to express it in the
new activation vector of the logistic network. (In this derivation the function of
a vector is meant to work on each element of the vector separately, resulting in
a vector again. Imagine an index if this is not to your taste.)

_'?sr‘ivh = tanh(le’taunhVvtanh + gtanh)
= tanh((2‘4’sigm - f)Wtanh + gtanh)
= tanh(Qgsingtanh - thanh + gtanh)

Now, set the weight matrices and biases according to:
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Wianh = Wsigm/4 (45)
gtanh = gsigm/Q + thanh (46)
then

?;;;Vh - tavnh(AAsigmI/Vsigm/Q - IWtanh + bsigm/2 + IWtanh)
= tanh(AsjngSigm/Q + bsigm/Q)
= 2G(Asingsigm + bsigm) -1
=2t T

Thus, if we set the biases and weight matrices according to equations 4.5 and
4.6 the networks are equivalent. To achieve the same output we can just use the
linear transformation given in equation 4.4. As the input in a standard ESN is
added to the input in the activation function, the input should be a factor two
larger when using the sigmoid activation function as well (another way to look
at this is to consider the input to be a temporary change in the bias of a node).
Also note that this equivalence is not limited to ESNs; for example, along the
same lines, it is possible to show the relation between CTRNNs with logistic
and tanh activation functions.

The decision which activation function to use might seem unimportant now,
as the activation functions have been shown to be equivalent. However, the
tanh activation function has an advantage: if the biases are set to zero, the
network has a fixed point at the zero state. The logistic network without biases
on the other hand has a fixed point depending on the weight matrix. If we want
it to be the zero state, we require specific biases. Interestingly, Beer (1995)
referred to this bias setting as the ”zero crossing” of a CTRNN and explains
why it is useful . However, the ”zero crossing” in a tanh network is much more
transparent as it is not dependent on the weights. Therefore, manipulating the
weights and biases in a tanh network leads to a more predictable change in
network dynamics. This is desirable, especially when constructing reservoirs.
Thus, we will use the tanh activation function.

Input Method

Finally, we have to choose how the input patterns are presented to the network:
the weighted input values can be added to the input of the activation function,
as it is done in most ESNs (see equation 4.1), or the weighted input values can
be directly added to the activation level of the node, as we do in equation 4.3.
The main reason for this choice is that the reservoir will have a range of time
constants. These time constants influence the short term effect that the value
of the activation function has, because those two factors are multiplied and
then added to the old activation value. Thus, an input that is added under the
activation function for a fixed number of timesteps has much less influence on
a node with a small time constant than one a node with a large time constant.
If the input is added to the activation of the node straight away on the other
hand, we do not suffer from this attenuation, increasing the input separability.

Influencing the activation of the nodes directly has the additional benefit
that the effect of the input weights is larger and more direct. This means we
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can increase the differences in activation levels in the network by increasing the
input weights. The result is that the output weights can be smaller. This is an
advantage, because ESNs often utilize small changes in the network dynamics,
which can lead to very large weights (of the order of 10° and up) if the differences
in activation levels are small. Such large differences in weight values can give
problems when using regularization or evolutionary algorithms when training
the weights. The disadvantage of adding the input directly to the activation
value is that one step of non-linearity is lost. This should not give large negative
effects though, as the number of timesteps per trial is large enough (more than
ten).

Note that a related choice, whether to apply the activation function to the
weighted sum of node activations or to take the weighted sum of activation
functions applied to node activations, was not investigated. However, this should
not make a large difference in dynamics, as this only changes the quantity that
is stored in the nodes (at least, as long as the input and output methods are
changed accordingly).

4.6 Assessing ESN Activity

Having described the dynamics of the reservoir, it is important to find out how
the ESN is behaving in practice and what are proper settings for parameters,
such as the input scaling. This parameter tuning has always been a challenge
in ESN research and is a matter of experience according to Jaeger (2001). The
researchers involved in this project have only limited experience with ESNs, and
to make the situation worse, no precedent for classification of binary patterns
is known to us. Therefore, we tried to gain some insight in the activity of the
ESN with different visualization techniques.

The most obvious and foolproof method of investigating the ESN activity is
to plot the activation of a number of nodes at all timepoints in a diagram as
in figure 4.5. This immediately reveals the diversity or richness in the reservoir
resulting from the input. Of course, one should use the same inputs as in the
actual task that has to be solved, as the reservoir activity is not only dependent
on the reservoir properties (connectivity, spectral radius, etcetera) but also on
the input signals. This overview is useful for determining whether the chosen
parameters are in the right ballpark and if not, what is wrong.

Because we decided to use continuous time instead of discrete time, we
have the interesting possibility of gaining insight from multidimensional scal-
ing (MDS). MDS can be used to represent high-dimensional data in a lower
number of dimensions, usually two or three for easy visualization. This is done
by calculating at each point in time how far the current state is removed from
all other states using an arbitrary metric. This set of distances is then con-
verted into a low-dimensional set of coordinates. For an review of MDS and
similar techniques, see Borg and Groenen (2005). When using this method on
a standard ESN with a regular task (e.g. NARMA), one would not be able to
make sense of the result: every state is different from the other because of the
echoes that are still active and the discrete steps in time. That means the result
would look like a plate of spaghetti or a cloud of points. However, if we have a
discrete set of input patterns and the echoes are not causing big differences in
activation patterns, the result of MDS should clearly visualize the effect of the
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different input patterns in the reservoir.

The consequence is that the MDS result will look differently for networks that
do not have echoes, networks that have weak or normal echoes and networks that
are almost independent of the current input and/or exhibit chaotic behaviour.
These differences can be seen in figure 4.6. Although this use of MDS is most
useful for an ESN that is used to classify a restricted set of input patters, it
might also be possible to assess ESNs with it in general, because it gives a visual
representation of the echo state property and the network dynamics. However,
as noted before, the performance of a network is also dependent on the specific
input properties, so care has to be taken when using this method to assess ESNs
designed for solving tasks that take input from an unrestricted set. Moreover,
as stated before, this method is not expected to deliver very good results in
discrete time. Finally, it may not be possible to directly predict the performance
of an ESN with this method; it merely assesses the dominant dynamics. An
interesting application of this method might be to find an appropriate spectral
radius. We used this method mainly to find proper settings for the bias and
input scaling.
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Figure 4.5: An activation plot over 900 timesteps, corresponding to 60 trials.
The activation at a number of nodes is almost completely determined by the
input: find the repeating red and blue lines. Most other nodes show much fainter
activity, which is a non-linear combination of the current and past inputs.

4.7 Implementation

Most critical aspects of the ESN have been discussed in the previous sections.
The architecture, tasks, learning procedure and reservoir dynamics have been
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Figure 4.6: MDS plots of ESN activity over 60 trials, with arbitrary units.
In figure (a), the activity in the network is dominated by the input patterns:
each trials starts at one of the markers that have the largest distance from the
origin. Then, thanks to the spectral radius being smaller than one, the activity
contracts to the origin of the MDS plot (which corresponds to a stable fixed point
in this case). On closer examination, it is possible to find four groups of traces.
Each group corresponds to a specific state of two of the three input nodes in the
trial (and eight groups could be detected if it would have been possible to print
this figure in 3d). The small differences in starting and ending points in each of
these groups represent the echo from previous trials, explaining the capability of
this network to solve the memory task. In figure (b), the activity of the network
is dominated by the internal connectivity, due to a spectral radius larger than
one (it was set to two, to be precise). In this case, this leads to a limit cycle with
small perturbations by the input patterns. In other networks, a variety of other
dynamics could be observed as well. It should come as no surprise that for this
network, the test error was much larger than the training error. Nevertheless,
it performed well above chance level at a 2-back task; apparently at least some
information from the input patterns was stored long enough.
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defined. Here we will list the parameters that have been used for obtaining the
results and address the remaining odds and ends.

An input pattern, consisting of values of -0.5 and 0.5, was presented at the
beginning of each trial for the duration of one timestep, with the top cluster of
the reservoir receiving the input at the first timestep and the bottom cluster
receiving the input at the second timestep. This was done to ensure that the
separating the inputs did not have any effects due to the combination of infor-
mation at a different point in time, although it eventually turned out not to
influence the results. After a fixed number of timesteps the activation of each
node in the bottom cluster was used for finding the output value. The output
node with the highest activation value was the selected output, according to the
winner-takes-all principle. Of course, if this node corresponded to the desired
output, the trial was counted as correct, and incorrect otherwise.

No washout periods were used between training and testing periods (contrary
to other ESN studies) and the reservoir was initialized without any activation.
For the regression procedure, a desired output was set to 5, while all other,
undesired output node targets were set to 0. For the range of leaking rates, the
following formula was used, with n being the memory length:

t =0.08 exp(—0.2n)

g~ U(t,t+0.02)

All parameter settings can be found in table 4.2 and the Matlab code can be ob-
tained from the author and from https://github.com/RemcoTukker/PFC-ESN.

’ Property \ Value (temporal / policy abstraction) ‘
Number of Nodes 100 / 200
Number of Nodes Top : Bottom 1:3
Reservoir Connectivity 0.05
Reservoir Weight Distribution Uniform, centered at 0

(but top-down weights are scaled
and bottom-up connections removed)

Top Down Scaling 1.0 / 0.6
Spectral Radius 0.9
Input Connectivity 0.1
Input Weight Distribution U(-2.5,2.5)
Bias Distribution N(0,0.3)
Timesteps Per Trial 15
Number of Training Trials 800
Number of Test Trials 800
¢ (leaking rates) +0.0001 to 0.1 / 0.08 to 0.1

Table 4.2: The parameter settings of the ESNs. Note that weight scaling in the
reservoir is determined by the spectral radius and the random connectivity; no
fixed values can therefore be given.
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Chapter 5

Results and Discussion

5.1 Results

In figure 5.1 we can find the performances of the networks on the policy ab-
straction task. We can see that in case of a small number of low-level cues
the performance of both networks is near perfect. This means that our perfor-
mance measure is not suitable to find a difference in performance between the
two networks in this condition. When the number of low-level cues is increased,
the task apparently gets harder to solve, as the performance decreases. When
eight or more low-level cues had to be integrated, the performance was very low,
again limiting our ability to measure the difference between the two networks.

In figure 5.2 we can see the differences between the median performances
of the networks with topological input and the networks with uniform input.
As we just established, we cannot find large differences in the easiest and in
the hardest condition. Over the conditions in which our performance measure
gives a useful result, we see that the number of low-level cues in the WCS
task is critical for the performance difference between uniform and topological
networks. When a small number of features has to be integrated, the uniform
network has an advantage over the topological network. However, when a large
number of features has to be integrated, the performance is better when using
a topological network.

With respect to the temporal abstraction, we can find a similar relation. In
figures 5.3 and 5.4 we can see that for short memory length, uniform processing
gives an advantage, while for a long memory length topological processing gives
an advantage. Again we can also see that for the easiest and hardest conditions
the performance measure fails to show a difference because the performance is
near perfect and near chance level, respectively. Note that the measured effect
in the case of temporal abstraction is much larger than in the case of policy
abstraction. Also note that the easiest condition, with memory length 0, is a
task without abstraction: it is purely the lookup of the current input pattern.

Significance of the results was tested with a Mann Whitney U test (also
known as the Wilcoxon rank-sum test) in the conditions that showed the largest
difference between the uniform and topological ESN (thus, in the conditions with
3 and 6 low level cues and in the conditions with a memory length of 3 and 15).
In all these conditions, the differences between the uniform and topological ESN
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Figure 5.1: In this figure, each column represents the distribution of the per-
formance of 200 random ESNs, with the box covering the lower quartile to the
upper quartile and the whiskers covering 1.5 times the interquartile range. The
blue bars represent ESNs with topological processing, the orange bars ESNs
with uniform processing. At the left, the number of low-level cues that had to
be integrated was just one, at the right it was eight. Obviously, the performance
decreases from perfect in the easiest condition to rather low in the hardest condi-
tion. However, we also found a difference between the uniform processing ESNs
and the topological processing ESNs, which is highlighted in the next figure.
The red lines are at chance level for each of the conditions, while the pink line
is at the performance level that can be reached by integrating all low-level cues
but ignoring the high-level cue.
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Figure 5.2: The difference in median performances between topological pro-
cessing ESNs and uniform processing ESNs (a positive number means that the
topological processing ESN performs better). From left to right the number of
low level cues in the policy abstraction task is increased from one to eight. In
the easiest condition, we see no difference between the network because both
perform perfect. Likewise, in the hardest condition we see only a small differ-
ence because both network perform rather bad. However, in between those two
extremes we see that for a smaller number of low-level cues a uniform process-
ing network performs better, while for a larger number of low-level cues the
topological processing ESN performs better.
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Figure 5.3: Again, each column represents the distribution of the performance of
200 random ESNs, with the box covering the lower quartile to the upper quartile
and the whiskers covering 1.5 times the interquartile range. The memory length
in the n-back test was increased from 0 (at the left) to 90 (at the right); note that
the at the right side of the graph the steps in memory length are much larger
than at the left side of the graph. Again, we can clearly see the performance
decrease when the task gets harder, effectively going down to the chance level of
0.5 (the red line) in the hardest condition. The difference between the uniform
input ESN and the topological input ESN is shown in the next figure.
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Figure 5.4: The difference in median performance between a uniform processing
ESN and a topological processing ESN as a function of the memory length in
a n-back test. At the left, the memory length is zero (which is a task without
abstraction) and both performances are near perfect, making the difference be-
tween the performances small. At memory length three however, we can see
that the ESN with uniform input clearly outperforms the ESN with topological
input. When memory length increases further, this relation is reversed. At the
longer memory lengths the difference diminishes again, because both perfor-
mances drop to chance level (albeit that the topological processing ESN drops
slower). Again, mind the larger steps in memory length at the right side of the
graph.
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were highly significant, with p < 0.001. Note that while it is possible to argue
that the Mann Whitney U test is in fact only measuring the significance of the
difference in medians under the condition that the two distribution are merely
shifted, this should not affect our results because visual inspection of figure 5.3
and 5.1 shows that the distributions are reasonably close to normal.

5.2 Interpreting the Results for the PFC and
the Human Brain

The results are exactly in line with what we would expect from the hypothe-
sis that functional localization in neural networks helps to preserve important
information, but is disadvantageous for information integration: with a large
number of low-level cues that have to be integrated, preserving the high-level
cue to influence the low-level cues enough is more important than with a small
number of low-level cues. Thus, in this situation the ESN with topological input
performs better. With a small number of low-level cues on the other hand, the
performance is mostly influenced by how easily the high- and low-level cues are
integrated, and we see that the uniform ESN performs better. A similar ex-
planation can be given for the n-back results: when the performance is mainly
dependent on the ability to retain information (a long memory length), it is best
to process information in separate locations. On the other hand, in a task with
a short memory length the performance is mainly dependent on the ability to
integrate information and it is best to process information uniformly. The per-
formance of the network is therefore a trade-off between information integration
and information preservation.

The results for the mapping of temporal abstraction levels are in general
agreement with other research that we discussed earlier: it has already been
shown that a topological map of temporal abstraction can be the result of the
backpropagation through time learning algorithm in a hierarchical network with
an abstract task (Botvinick, 2007). Also, such a structure has been shown to
partly self-organize using an evolutionary algorithm (Paine and Tani, 2005).
The results for the mapping of policy abstraction are for example in line with
the study by Yamashita and Tani (2008), which found motor primitives that
could be used again in a different context. However, we go one step further than
observing the topological organizations: we try to give an explanation.

We argued that we can make the step from our artificial networks to bi-
ological neural networks, because the wiring economy principle ensures that
information integration is handled within areas while information that has to
be preserved is processed in a separate area (Sporns, 2010). Indeed, we can find
examples of brain structures that are in agreement with our results. The obvi-
ous example for temporal abstraction is the classical psychological distinction
between short-term and long-term memory. While the debate is still out on
the exact neural substrates of these memory systems, it is well-established that
they are implemented using different mechanisms (Eichenbaum et al., 2000).
Another example is the distinction between information that is directly used for
motor actions in sensory-motor loops and information that is stored in working
or short-term memory (Fuster, 2001). Functional specialization at different pol-
icy abstraction levels can also be found. The DLPFC exerts control over brain
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areas that function at lower abstraction levels, for example the premotor cortex
(Koechlin et al., 2003). Indeed, those lower abstraction levels most likely have
to deal with a large amount of information, e.g. sensorimotor loops or different
sensor modalities, so that this mapping is beneficial according to our results
(note, however, that there may be other explanations for these structures as
well; also see the pitfalls section).

It is important to note that our results apply to reasonably large-scale neu-
ral networks. While a great deal is known about single neurons and small-scale
neural networks, it is problematic to interpret fMRI results in those terms (Nir
et al., 2007; Sirotin and Das, 2009), or even to explain neural population dynam-
ics with it (Tiesinga et al., 2008; Wang, 2010; Belitski et al., 2008). Therefore,
studying the properties of large-scale neural networks directly can be of use.
In our case, we can compare our results with the imaging studies of PFC that
we discussed earlier. While our results do not cover all aspects of the PFC, we
still would like to propose that the topological mapping of temporal and policy
abstraction levels over the PFC is explained by the information preservation
versus integration trade-off. If this is true, we expect to see similar fMRI results
for tasks involving multiple levels of policy abstraction as for tasks involving
multiple levels of temporal abstraction.

As we discussed in the literature review, most neuroimaging results suggest
both temporal abstraction mapping and policy abstraction mapping (Badre and
D’Esposito, 2009). The work by Koechlin et al. (2003) is in agreement with our
results, because his experiments included a large difference in timescales: the
context had to be remembered for mere seconds, while the episodic control sig-
nal had to be remembered for a much longer time, in the order of minutes.
This seems reasonable for tasks in daily life as well. The work by Badre and
D’Esposito (2007) is slightly more difficult to explain: contrary to our find-
ings, they find a mapping of abstraction while the number of low-level cues is
small. However, this may be caused by the difference between natural tasks,
that influence the structure of the brain through evolution and development,
and artificial tasks used in experiments. We will discuss opportunities in this
direction in the further research section. Also see the pitfalls section for alter-
native explanations.

Another issue is the inconsistency between the various imaging experiments:
while we predict that temporal and policy abstraction levels should lead to
similar subsequent activation patterns in fMRI, the experiments have so far
always involved mixtures of different abstractions. The exception is the study by
Christoff et al. (2009), but unfortunately it is in the language domain instead of
the action domain. We can use it as an example for future fMRI studies though:
one study assessing the different abstractions, neatly separated, could greatly
benefit our understanding of the neural substrates that process abstractions.

The most recent addition to the debate was made by Reynolds et al. (2012).
The authors argue that they did not find any evidence for topological mapping
of abstraction, but propose the “adaptive context maintenance” hypothesis.
However, they do mention that their hypothesis does not in principle exclude
the cascade model proposed by Koechlin et al. (2003). Even though our ideas
are quite similar to the ideas in Reynolds et al. (2012), our results do not agree
with their conclusions. While they suggest an absence of topological mapping
of abstractions, we show that we have theoretical reasons to expect it. This
is regardless of how the information in the PFC is exactly maintained. As
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the analysis of their results is performed differently from the other studies,
we suggest that the data set should be examined closer and the experiments
reproduced. Also, the tasks and the strategy that people use to solve the tasks
should be considered, as detailed in the literature review section.

All in all, we found one mechanism that may have driven the development of
functional specialization of brain areas at different levels of policy and temporal
abstraction, both in the PFC as in other brain areas. If this mechanism is indeed
important for PFC development, we can explain the mapping of abstractions
as proposed by Koechlin et al. (2003) and Badre and D’Esposito (2007). Also,
we predict that the tasks involving temporal and policy abstraction activate a
similar sequence of PFC areas. Furthermore, we cast doubt on the proposal to
do away with topological mappings of abstractions by Reynolds et al. (2012). Of
course, a model cannot change imaging results. Therefore, we proposed further
investigations of the PFC; especially because the studies and evidence so far are
not consistent. We will discuss promising directions for such investigations in
the further research section.

5.3 Pitfalls in the Interpretation

The first question one always has to ask in a modelling study is whether the
generalization from the model to reality can be made. In our case, the first step
in the generalization is the step from the ESNs we investigated to ESNs and
artificial neural networks in general. Of course, we investigated a range of pa-
rameters, but due to the nature of the network and the task, the effect could not
be confirmed under all parameter settings. For example, the performance could
be perfect or at chance level for both networks, or one of the networks could be
better regardless of the memory length or number of low level cues. In this last
situation, we could not simply take the difference between the medians of the
performances, because this measure could be distorted by the way we measure
the performance. This gives us two possible ways in which the interpretation
of our results may not be valid for neural networks in general and the brain in
particular.

The first and foremost problem is that the found relation may be dependent
on the parameters that we used. It is easy to assume that all relations are
additive and independent of the parameters, but the fact that we are dealing
with a highly non-linear system already suggests that this does not have to be
true. In fact, it might be possible that under other circumstances the findings
would be opposite. More simulation work could make this problem smaller, but
not solve it without an exhaustive search. The second, related problem is that
we only investigated a very small subset of the potential ways in which a task
and the input and processing topology can interact. This means that even if
the effect that we found is the same under all parameter settings, other effects
may be much bigger. So, under other parameter settings or task conditions,
the measured relation may only give an insignificant contribution to the total
difference in performance. An example of this effect is that we had to carefully
tune one parameter, namely the connection strength between the two layers of
the network, to be able to find the presented results. These two problems can
be mitigated by using artificial evolution, as will be described in the further
research section.
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The next step is to generalize our results to biological neural networks. As
with many other neural networks models of the brain, an important problem
is that biological neural networks are much richer than most artificial neural
networks. Different neuron types, many more connections, plasticity and even
signals that are propagated outside neurons, even the simple fact that real
neurons have a location, all make that an artificial neural network may be
insufficient to model the mechanisms of biological neural networks (Anderson
and Davis, 1995). Moreover, we choose the task for the neural network based on
current neuroscience theories, but that does not mean that the biological neural
networks solve only this task: they may have other tasks as well and perhaps
not do the task we used for the model at all. Obviously, the only way to solve
these problem is to validate the results in biological neural networks, which will
shortly be discussed in the further research section.

When applying our results to the biological neural networks in the DLPFC
we encounter the specific instantiations of the general problems mentioned
above. The first thing to be discussed are the parameter settings: the parame-
ters we choose were not based on physiological results. As described above, this
might make our result irrelevant for the situation in the DLPFC. In particular,
we have to mention the connection strength between the top and bottom layer
in our model, as this parameter turned out to be very important: changing this
parameter from small to big could change an overall performance advantage for
uniform networks to an overall performance advantage for topological network.
While we may argue that the parameter setting we used is probably realistic,
it is likely that the parameter is in fact tuned to benefit either topological or
uniform processing. Physiological studies would be required to find a realistic
value for the top-down connectivity. Of course, there may be other important
factors in the model, that we did not investigate, as well.

The second and arguably most important problem with applying our results
to the DLPFC is that apart from exerting cognitive control, it probably also
has the function of learning task sets (Sakai, 2008). This is a difficult thing
to achieve and may therefore also have a big influence on the structure of the
PFC. In fact, some researchers have already started exploring this direction.
The first results indicate that a hierarchical PFC makes learning easier. In
particular, it might support generalization of knowledge or task sets to new
domains (Reynolds and O’Reilly, 2009). This direction of research seems very
promising and deserves more thorough investigations. Unfortunately, learning
is out of the scope of our study as an ESN is arguably not suitable for modelling
learning in the PFC.

A third interesting point is that biological neural networks may be decoupled,
even when they share the same location and space. This can for example be
achieved by axons preferentially attaching to a specific type of neurons. Thus,
it would even be possible to construct a hierarchy in a single place, making it
undetectable for fMRI. However, space is of course not unlimited in the human
brain, making such a construct unlikely when larger numbers of neurons are
involved: it would require longer axons than segregating the two networks.
Nevertheless, small-scale hierarchies may be more common than expected and
our findings are not exclusively tied to networks that are spatially segregated.

Finally, we have to ask the question whether our task matches the task
that the PFC has to perform for cognitive control. An important factor is the
representation of abstract information in the PFC. We used one symbolic node
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for each input cue in the model, with each node loosely representing a population
of neurons. However, it might be the case that in the prefrontal cortex the same
population of neurons is used to represent different types of information, or the
opposite that multiple populations code for one particular input. This may be of
influence on the results, especially because the number of relevant input nodes
is one of the identified critical factors. The neural representation is an active
area of research, but unfortunately not much is known yet (Jin et al., 2009;
Tiesinga et al., 2008). Additionally, we only took into account temporal and
policy abstraction. Badre identified two additional abstraction types: domain
generality and relation integration (Badre and D’Esposito, 2009). It remains
to be seen whether these abstractions rely on the same general principles as
we have identified here or introduce new complications that negate the current
findings. Also, the full scope of the tasks of the PFC may only be investigated
with embedded, embodied research; see the further research section.

Keeping all these pitfalls in mind, we have to take great care when apply-
ing our results to biological neural networks. We have shown that functional
specialization on different abstraction levels can help cognitive control, but this
does not mean that this is or was in fact the case in the PFC. As we have
discussed in this section, there is a handful of good reasons not to think so.
However, it might be possible to show that general, structural rules of thumb
can explain brain structures by doing more research.

5.4 Future Research

We will start with the most obvious idea for further research: the tasks that have
been used in the past by Badre, Reynolds and Koechlin should be improved.
Already, different researchers come to different results and note that this might
have to do with small differences in the tasks. For example, Reynolds presented
the cues for his policy abstraction tasks sequentially (Reynolds et al., 2012),
while Badre presented them simultaneously (Badre and D’Esposito, 2007). This
means that the brain might use different ways to solve these problems possibly
leading to different imaging results. When doing imaging research, we should
also take the strategy that people are using into account when interpreting the
results. For example, Reynolds policy abstraction task can be solved without
using any abstraction, just by counting particular cues (because all cues are
equally important) and then deciding whether the number is odd or even. If
people indeed used such an alternative strategy, Reynolds measured something
different than he thought. Thus, before testing the tasks should be carefully
evaluated and in the best case be matched with earlier research. Without such
an effort it will remain unclear which results are replicable and which are not.
Modelling work as has been done by Botvinick (2007), O’Reilly and Frank
(2006) and us, gives a different, unique possibility to improve on the tasks used so
far: the models can be implemented for a robot to investigate tasks that humans
and other animals have to solve in daily life. Our model has been specifically
designed with this possibility in mind and it should therefore be possible to do
this without much effort. This addresses the problem that the imaging results
so far may be just an epiphenomenon of a different, more important structure.
It has for example already been mentioned that different types of abstraction
may co-occur in nature (Botvinick, 2007). So, an embodied platform can help
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to better understand the reasons why the PFC shows a certain organization, by
clarifying which task the PFC actually has to solve.

Another approach to further research is to integrate information from dif-
ferent research areas more thoroughly. Physiological data of the brain areas
under investigation is sparse, while it will be of vital importance for more de-
tailed modelling attempts. One of the recent developments that may turn out
to be important is the interest in connectomes: maps of the connections in
the brain (Sporns, 2011a). Another field that may contribute is developmental
neuroscience, see for example Supekar et al. (2009) and Diamond (2002) for
publications in this field. Of course, evolutionary biology may contribute im-
portant insights as well: we share the general structure of our brain with all
vertebrates and it is critical for our survival, suggesting slow and incremental
evolution. See for example Jarvis et al. (2005) and Dunbar and Shultz (2007).
Physiological studies are also important: in our model, they could for example
give a realistic parameter setting for top-down connectivity. Finally, we have
to mention Tononi and Sporns (2003): a more mathematical approach can help
to quantify findings, at least in models. Whether this can be feasible in vivo
remains to be seen. Interestingly, O’Reilly and Frank (2006) and Hazy et al.
(2007) seem to be on the right way already: their model explicitly bridges the
gap between functions and brain areas and in a way approaches the PFC as an
evolutionary extension to the Basal Ganglia.

On the side of our ESNs, an important possibility is to use evolutionary
algorithms. Evolutionary algorithms can cover the whole parameter space, ad-
dressing the problem that the found relations may only be valid for a small pa-
rameter range. Thus, the performances of the respective networks in our study
could then be directly compared. The most interesting approach is probably
to use the evolutionary algorithm not only for the parameter settings, but also
for evolution of the input weights. This way, we can directly evaluate whether
the benefits of topological mapping can indeed drive evolution and self-organize
the ESN into a hierarchy with specializations at different abstraction levels.
This would in fact be a logical extension of the work of Paine and Tani (2005):
they showed that a network adapts its time constants when input is giving at
different locations, but not the reverse. It would be similar with the research
of Botvinick (2007), but with an unsupervised learning method instead of a
lengthy supervised learning method. Also see Bullinaria (2009) for additional
thoughts on computational modelling of brain structures.

One could also attempt to explicitly model the PFC with an ESN. Earlier,
we noted that this was not the ideal interpretation of our research, but it is
not impossible. It will require some creative work though, as it is not directly
obvious how to relate the performance of the ESN to behavioural measures.
Also, before trying to do this one has to take into account that there are already
many other models that were made to match behaviour on a large range of
psychological tests, for example the cognitive architectures (Anderson et al.,
1997). To take an extra step in this direction it is probably a better idea to
use or improve one of the existing other models. On the other hand, an explicit
match of our results with behavioural results would make the claim that the
PFC shows functional specialization on different abstraction levels, because it
improves cognitive control, much more plausible.

Also, such a model would be unique in its capability to directly investigate
structure and hierarchy. This can be useful to model recent findings of changed
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connectivity patterns: healthy people showed a hierarchical organization of the
multimodal network (as we described earlier), while this hierarchy was reduced
in people with schizophrenia (Bassett et al., 2008). Interestingly, schizophrenia
also compromises the performance on certain cognitive control tasks. Partic-
ularly, the masking paradigm (in which a very short stimulus is preceded or
succeeded by a mask) shows that patients have a deficit in top-down control
of visual information processing (Gilbert and Sigman, 2007). Thus, it may be
possible to link the control deficits with the change in PFC organization by
using an ESN-based model. Other diseases, like Alzheimer’s disease, may be
investigated in a similar way (Sporns, 2011b).

Finally, we would like to include some notes on further research that would
be necessary to use our model successfully as a robot controller. Arguably the
best way to do this, is to embed the ESN in a behaviour that is part of a larger
behavioural system. The input to this behaviour can be an arbitrary set of
sensor signals, while the output of the ESN can be used to influence the other
behaviours (e.g. just by increasing or decreasing its importance during action
selection). The ESN can then be compared with a classifier of contexts in which
particular behaviours are relevant, or with an affordance calculator (Scheutz and
Andronache, 2004). The benefit compared to existing solutions would be that
we can use a recurrent neural network to do this classification automatically
(with supervised training). The foremost problem that should be solved for this
application is that we want to use analog and continuous input signals while our
research only employed binary input signals at fixed time intervals. While ESNs
generally work with analog inputs, adapting it for continuous input might prove
challenging. A different opportunity would be to investigate how performance
can be increased by the choice of the reservoir and by reservoir adaptation. In
our results we can already see a large spread in performance and some articles
describe how to choose and adapt reservoirs (Jarvis et al., 2010; Sussillo and
Abbott, 2009; Dutoit et al., 2009).

Obviously, a great opportunity would be to combine evolutionary algorithms
and robots for on-line evolution. It has already been shown that an evolutionary
algorithm can be used to replace the regression procedure for training an ESN
Hartland et al. (2009), allowing for unsupervised learning of the whole ESN
and therefore unsupervised context learning. The parameters of the network
and the input weights would have to evolve at a slower time scale than the
output weights to make sure that a specific output weight setting does not
hamper evolution. Different outputs biasing specific behaviours would show co-
evolution, as the outputs of the ESN are not directly related to one another, but
only through the environment (Nolfi and Floreano, 1998). This also means that
new behaviours can be added later without too much effort, possibly addressing
a major problem in behavioural robotics (Arkin, 1998).
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Chapter 6

Conclusion

All in all, we conclude that research bridging robotics, artificial intelligence
and cognitive neuroscience can lead to important results. We confirmed our
hypothesis that cognitive control tasks with temporal and policy abstraction
share the same requirements regarding information separation and preservation:
within each abstraction level information integration is most important, while
between abstraction levels information preservation is most important. This
finding can explain the observed topological mapping of abstraction levels in the
PFC, because the wiring economy principle leads to information being integrated
best in a single area and preserved best by being spatially segregated. Despite
a number of limitations, especially not taking into account learning, we can
still use these results to give a theoretical background for the interpretation of
imaging results. Specifically, we show that the mapping of temporal and policy
abstractions in the PFC may be explained by the same principles and that we
have a good reason to expect a hierarchy of abstraction levels to be present,
contrary to a recent proposal.

Besides the results from the simulation, we also proposed a number of im-
provements on the tasks used so far. Firstly, using the traditional abstract tasks
more consistently can help to clarify the discrepancies in the imaging results so
far. Secondly, we constructed our model in such a way that it can be used as
a robot controller for embodied and embedded research. This would allow to
investigate tasks that are encountered in daily life and have structured our brain
during evolution. A robot implementation of our model can also bring signifi-
cant results for robotics research: it gives a way to adapt a behavioural system
to the current context and information that has been integrated over time. This
can make the tedious process of building a behavioural robot controller easier,
as not all the different situations and interactions have to be encoded in the
hand-wired connections between behaviours. Instead, the learning procedure
for the Echo State Network can take this burden.
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Appendix A

Further Technical Thoughts

In this appendix we will give some further thoughts about the technical features
of Continuous Time Echo State Networks (CTESN) and application in robots.
First of all, we would like to show that the CTESN approach can indeed handle
multiple timescales and has a memory length that can practically exceed the
reservoir size. For this, we constructed a new task with 3 levels of abstraction.
At the top level, we find one input node that gives a high value once every
600 trials. This high value (that lasts for one trial only) indicates the start of
a 400-trial episode in which one of the two input nodes at the middle level is
relevant. After this episode, the other input node at the middle level is relevant
again. The same is true for each of the input nodes at the middle level: each
of them signals the start of an episode in which one out of two input nodes at
the bottom level is relevant (thus, this makes a total of four input nodes at the
bottom level). These cues are given once every 30 trials and the episode lasts
20 trials. The bottom input nodes are only relevant for the current trial and
the relevant node signals which output node should be chosen, giving us a total
of eight output nodes.

Note that the average value of all the input nodes is set to zero, to prevent
the top and middle parts of the ESNs being driven to extreme activation values
by the ‘standard’ input value. For a robot, this might mean that the input to
the higher areas of the network (with slow time constants) should be high-pass
filtered, for example by calculating a running average for a sensor value and
only give the difference of the current sensor value with the running average
as an input to the network. This keeps successive sensor readings from driving
the network to extreme activation values. Instead, input is only given when the
current situation changes.

The task can be performed relatively well, even by small CTESNs. In figure
A.1 the performance distributions are shown for different reservoir sizes. Note
that the performance of a method without any memory would be 0.25 and the
performance of a system that only handles the bottom and middle level would
be 0.5 . Most of the CTESNs give a performance much better than that, even
if the reservoir consists of just 60 nodes. Note that each condition contains only
20 reservoirs; the figure is only meant to illustrate the general trend. Also note
that while some time was spent to tune the time constants, this performance
level was reached within a couple of hours and can probably still be significantly
improved. The matlab code for the tasks and the CTESN with three levels can

7



be found at https://github.com/RemcoTukker/PFC-ESN.
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Figure A.1: Each column represents the distribution of the performance of 20
random ESNs, with the box covering the lower quartile to the upper quartile
and the whiskers covering 1.5 times the interquartile range.

However, we can also note that increasing the size of the reservoir gives only
small improvements in performance. The cause is that most nodes that are
added do in fact not contribute to the richness in the reservoir, but are instead
completely redundant. One method that might solve this issue is backpropagation-
decorrelation (Steil, 2004, 2007), but we lacked the time to investigate this ap-
proach.

Another opportunity is to investigate how well a support vector machine
(SVM) would perform on the policy abstraction task described in this thesis.
While it cannot intrinsically integrate information over time, it may well be that
it outperforms the ESN on tasks that do not contain temporal abstraction. In
such tasks, an SVM may be useful for classifying context in behavioural robot
controllers.
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