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“All truly great thoughts are conceived while walking.”

Friedrich Nietzsche
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In this thesis we construct a method to create a temporal segmentation on time series

data recorded during human activities by inertial sensors in smartphones. Our assump-

tion is that information about changes between activities can aid activity classification

methods, since it adds information about sequential data points. We explore current

temporal segmentation methods and relate the problem to change detection. A change

in the performed activity results in a change in the data distribution of a time window.

Using a One-Class Support Vector Machine algorithm we model the data distribution

in the shape of a high dimensional hypersphere. A change in the distribution can then

be discovered by analyzing the radius of the hypersphere, which will increase in such

events.

We implement an algorithm to process real-world time series data and find changes

in performed activities. The data needs to be recorded in a continuous nature, with

the transition periods between activities present. Since common available data sets do

not meet this requirement, we have recorded our own data set and made it publicly

available. A ground truth is provided both as manually annotated change points and

video recordings of the activities.

The constructed method, One-Class Support Vector Machine (SVM) Human Activity

Temporal Segmentation, is able to find changes between performed activities in an un-

known environment.
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Chapter 1

Introduction

With the wide availability of smartphones and built-in inertial sensors, more and more

applications of Human Activity Recognition (HAR) are introduced [6, 20, 27]. Many

approaches to recognize the performed activity rely on classification of recorded data

[5, 7, 11, 21, 33, 74, 77], which can be done online or in batches after the performance

[22]. Often time windows are used, which form short consecutive segments of data and

are processed in a model construction and recognition phase. The constructed model

is used to determine which (earlier learned) activity is performed. Besides the explicit

classification of the data, an implicit obtained result is a segmentation of performed

activities over time.

The goal of this thesis is to create an method for online temporal segmentation of time

series data. This will be performed explicitly, prior to the classification of data segments

to learned activities.

Our assumption is that a temporal segmentation of time series can be beneficial in-

formation for classification methods. Instead of using a fixed window approach, the

classification methods can use a larger set of homogeneous data. Thereby, the methods

have more information to create a solid model of the activities.

To find a temporal segmentation, we rely on change detection in time series. In the

context of this research the time series consists of recordings from inertial sensors dur-

ing the performance of human activities. The sensors, such as the accelerometer, are

nowadays widely available in smartphones. We are interested in real-world data from

both in- and outdoor activities performed in a continuous manner.

Compared to recordings in a controlled laboratory environment, we expect the real-

world data to be prone to unexpected characteristics. The constructed method must be

robust in order to handle these.

1
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For the change detection algorithm we will use a special form of a SVM, the One-Class

Classification (OCC) based Support Vector Data Description (SVDD), as introduced by

Tax [63]. This method models the data in the shape of a high-dimensional hypersphere.

From this hypersphere the radius is extracted, which can be used as an indication of

change and be processed by one-dimensional change detection algorithms. The radius of

the hypersphere is used in the following relation. When the performed activity changes,

so will the data distribution and characteristics. This results in a change of the con-

structed model, especially in the radius of the hypersphere. Thus, a change in the radius

indicates a changes in the performed activity.

The remainder of this introduction is organized as follows. In Section 1.1 the scope of

this thesis is discussed. A short discussing on the workings of an One-Class Support

Vector Machine is provided in Section 1.2. The data sets we have used in this work are

discussed in Section 1.3. Section 1.4 gives a short overview of our contributions. Finally,

Section 1.5 outlines the structure of this thesis.

1.1 Scope

The scope of this thesis are segmentation methods of inertial sensor data in the field

of machine learning. The type of data is inertial sensor time series, collected by on-

body worn sensors as found in smartphones. These time series are recorded during the

performance of real-world human activities. The setting of the activities are real-world

environments, both in- and outdoor.

As mentioned in the previous section, a segmentation is often obtained as a by-product

from direct windowed classification. Other approaches have a very rigid form of segmen-

tation, e.g. by limiting the number of possible segment types [14, 35], or have applied

it to different type of time series data. In Fuchs et al. [24] artificial sinusoidal data is

processed. Li and Zheng [44] use visual motion data streams to find patterns of activ-

ities. The method of Guenterberg et al. [28] is able to distinguish periods of rest and

activity in inertial sensor data streams. Others have extracted features from windows of

data which are used for the segmentation [29]. These activities include sitting, standing,

walking, running, and ascending and descending staircases.

The problem of finding a temporal segmentation can be seen as a sub-problem to the

problem of Activity Classification. This relation is illustrated in Figure 1.1. The figure

visualizes that we can apply classification on time series data. In many approaches

it is applied to (partially overlapping) windows of data. In the context of HAR, the

window length commonly consists of around two seconds of data. In our setup we
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perform temporal segmentation, instead of using a fixed window length. Each segment

will consist of homogeneous data, in the sense that the underlying data generating

activity should not change within a segment. Likewise, the previous and next segments

(if present) should be generated by a different activity.

Temporal Classification

Time series 
Data

Activity 
Classification

Temporal Segmentation

Model construction

Change detectionOC-SVM 
model

Hypersphere 
Radius

Classification 
over windows

Figure 1.1: The goal of this thesis. The scope of this thesis is Temporal Segmentation,
which can be useful in the context of Temporal Classification. Given a data set, we
construct a OC-SVM high-dimensional spherical model, from which we extract the
radius. This metric is then applied to direct change detection algorithms. The detected

change points can support the classification of homogeneous segments of data.

To find these segments of homogeneous data, we employ a model construction phase.

The One-Class Support Vector Machine transforms the data to a higher dimensional

space. Non-linear mapping functions are used to add flexibility to the classification

decision boundary. In the higher dimensional space an enclosing boundary around the

data points, in the shape of a hypersphere, is constructed. The size, expressed as the

radius, of the hypersphere depends on the distribution of the data points in the model.

We will use the radius of this hypersphere as a characterizing metric and base our change

detection on it.

The model processes the data in windows of fixed length. A change in data distribution

and characteristics should then result in a change of the hypersphere’s radius. Such a

(sudden) change in the radius thus reflects a change in the time series data. It indicates

the end of the current and the beginning of a new segment. In Section 2.2 a detailed

overview of temporal segmentation methods is given. Information about segments can

be used in the classification phase of HAR. Instead of using relatively small windows, it

can apply classification to the full segments of data. The final result, which is outside

the scope is this thesis, will be a full classification of activities over the time series data.

1.2 One-Class Support Vector Machines

In the setup, as described in the previous section and visualized in Figure 1.1, we employ

a model construction phase. For this model we will use an One-Class Support Vector

Machine implementation: the Support Vector Data Description algorithm by Tax [63].

In earlier research multi-class SVMs are used for direct classification of inertial sensor
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data [5, 33, 51]. Others have used OC-SVM classifiers for novelty or outlier detection

[13, 45, 48, 58, 64]. The method by Yin et al. [78] creates a OC-SVM classifier to filter

normal activity traces, using training data. However, to the best of our knowledge,

OC-SVM methods have not yet been applied to inertial sensor time series data directly

to find changes in behavior and create a temporal segmentation.

The OC-SVMs algorithms transforms the time series data, which can be of any high

dimension, to a higher dimensional feature space. When the data is assumed to be of

the same class, it can be characterized by an enclosing boundary. In case of the SVDD

algorithm this boundary is in the shape of a hypersphere. Using this model, we are able

to test the membership of a new data point to the described class. The new data point

is transformed to the feature space and its location is compared to the boundary. If it

lies within the boundary then it is a member of the class and otherwise it is regarded as

an outlier.

In case the data distribution changes, the data points will have a larger variance. It

will result in a larger hypersphere in the feature space. This means that a change

in the underlying process of a time series data results in a larger hypersphere radius.

Thus the OC-SVM method allows us to reduce a complex high-dimensional signal to an

one-dimensional time series data. The reduced time series can be inspected by simpler

change detection methods, in a number of ways. Chapter 3 will discuss the OC-SVM

methods in detail and Chapter 4 elaborates on the overall change detection method.

1.3 Data sets

In recent research two data sets for HAR have been made public. In order to benchmark

our proposed method we applied our method to these data sets. However, it turned out

the data sets were not appropriate for continuous temporal segmentation. In the Wire-

less Sensor Data Mining (WISDM) set [43] the activities are not performed continuously.

There is no transition period between activities. Since we are interested in the detection

changes between consecutive activities, we can not use this data set. The Human Activ-

ity Recognition Using Smartphones Data Set (UCI HAR) from [5] also lacks continuous

recordings. Furthermore, it seems to have incorrect labels. Finally, for both data sets

there are no visual images of the performed activities. So in case of ambiguity there is

no ground truth to consult. To overcome these problems, we have created our own real-

world data set: Almende Continuous Real-world Activities with on-body smartphones

Sensors Data Set [72].
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Our own data set is recorded by placing a smartphone with inertial sensors in the front

right pants pocket of a subject. The subject was asked to perform common and simple

activities in a natural environment, both in- and outdoors. During the performance the

subjects were also recorded with a video camera from a third-person point of view. This

allows us to create a ground truth for the temporal segmentation of performed activities.

Besides the recorded data sets we have used artificial data sets to obtain an objective,

quantitative, performance measure of the method. These artificial data sets are modeled

to the sets used in [13, 62]. In Chapter 5 we discuss the artificial data sets and results

in detail. The real-world recordings and results are discussed in Chapter 6.

1.4 Contributions

As a result from our proposed method and application to recorded real-world data sets,

this thesis will provide the following contributions:

1. Continuous recorded human activity data: the proposed method is applied

to our own recorded human activity data. This data set can be grounded by

using the video recordings of the subject while performing the activities. The data

set, consisting of raw inertial sensor recordings, manual change point and activity

labeling, and video recordings, is used for testing the method and is made available

to the public [72].

2. Application of OC-SVM methods to inertial sensor data: to the best of our

knowledge, this thesis is the first application of OC-SVM methods, especially the

SVDD method, to inertial sensor signals in the context of temporal segmentation.

Furthermore, this thesis contributes to research that has temporal segmentation

of inertial sensor data as its primary objective.

3. Adaptation of SVCPD: we have adopted and simplified the SVCPD method by

Camci [13] in order to find change points in time series data. In our simplification

we have not encountered a noticeably decrease in performance.

1.5 Thesis structure

The structure of this thesis is as follows. In Chapter 2 a literature review is provided.

We will look at the different interpretations and implementations for change, novelty,

and outlier detection. Previous work in the field of HAR is discussed and we end with
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existing applications of SVMs to change detection. Chapter 3 further analyses SVMs

and two implementations of OC-SVMs. It relates the properties of the constructed OC-

SVM models to change detection in time series data. That relation is applied to our

problem formulation in Chapter 4, where we construct our change detection method

One-Class SVM Human Activity Temporal Segmentation (OCS-HATS) [73], based on

the work of Camci [13]. In Chapter 5 we apply the method to artificial data and show

the quantitative performance. In Chapter 6 the method is applied to our real-world

Almende Continuous Real-world Activities with on-body smartphones Sensors Data Set

(ACRAS) [72]. In that chapter we show, by qualitative analysis, the ability of detecting

change in HAR data, recorded by inertial sensors. This thesis is concluded in Chapter 7,

in which we reflect on the performed research and state possibilities for feature research.



Chapter 2

Literature review

As described in Chapter 1, the focus of this research is the application of temporal

segmentation to accelerometer data. This is with the assumption that explicit temporal

segmentation can aid the process of temporal classification.

In recent years a lot of research has been performed to study classification of human

activities, recorded by on-body sensors. Especially since smartphones with accelerometer

sensors became widely available, research has focused on recordings from these devices.

In Section 2.1 we will start with an overview of statistical models used in this field of

study. That section will act as a starting point to look at the different types, applications

and methods of temporal segmentation. Section 2.2 follows the distinction made and

looks at a collection of temporal segmentation and change detection methods. It will

also relate the concept of OCC to temporal segmentation and change detection. In

Section 2.3 methods using density-ratio estimation of Probability Density Functions

(PDFs) for change detection are discussed. The final section of this chapter, Section 2.4,

will discuss a specific class of algorithms for OCC, namely the methods that use SVMs

for the classification task.

2.1 Statistical models

Many applications require the detection of time points at which the underlying properties

of a system change. Often this problem is formulated in a statistical framework, by

inspecting the PDF of the time series data at specific time windows. A change point is

then defined as a significant change in the properties of the PDF, such as the mean and

variance.

7
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The widely used Cumulative Sum (CUSUM) method by Basseville et al. [10] follows

this approach. It originates from quality control and benchmarking methods for manu-

facturing processes. This method, and some derivatives, are discussed and analyzed in

Section 2.2.2.

Many methods rely on pre-specified parametric model assumptions and consider the

data to be independent over time, which makes it less flexible to real-world applications.

The methods proposed by Kawahara et al. [40] and Lui et al. [46] try to overcome

these problems by estimating the ratio between the PDFs of time windows, instead of

estimating each PDF. This approach is discussed and analyzed in Section 2.3.

The density-estimation methods rely on the log-likelihood ratio between PDFs. The

method of Camci [13] follows an other approach within the statistical framework, by

using an SVM. One problem it tries to overcome is the (claimed) weakness of many

methods to detect a decrease in variance. The method represents the distribution over

the data points as a hypersphere in a higher dimension. A change in the PDF is repre-

sented by a change in the radius of this sphere. In Section 2.4 more applications of the

SVM-based methods are discussed. Since OCC and the OC-SVM method is central in

our approach, Sections 3.2 and 3.3 discuss these techniques in detail.

In the search for the change in properties, temporal segmentation and change point

detection methods can roughly be categorized in four methods in the way the data is

processed, as discussed by Avci et al. [6]:

1. Top-Down methods iteratively divide the signal in segments by splitting at the

most optimal location. The algorithm starts with two segments and completes

when a certain condition is met, such as when an error value or number of segments

k is reached.

2. Bottom-Up methods are the natural complement to top-down methods. They

start with creating n/2 segments and iteratively join adjacent segments while the

value of a cost function for that operation is below a certain value.

3. Sliding Window methods are simple and intuitive for online segmentation. It

starts with a small initial subsequence of the time series. New data points are

added to the current segment until the fit-error is above a threshold.

4. Sliding Window And Bottom-up, as introduced by Keogh et al. [41], combines

the ability of the sliding window mechanism to process time series online and

the bottom-up approach to create superior segments in terms of fit-error. The

algorithm processes the data in two stages. The first stage is to join new data

points in the current segment created by a sliding window. The second stage
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processes the data using Bottom-Up and returns the first segment as the final

result. Since this second stage retains some (semi-)global view of the data, the

results are comparative with normal Bottom-Up while being able to process the

data in an online manner.

For the application of this research Sliding Window and preferably Sliding Window

And Bottom-up (SWAB)-based algorithms will be considered. In the following sections

we discuss classes of algorithms grouped by the type of decision function, assuming a

SWAB-based data processing order.

2.2 Temporal Segmentation

This section gives an overview of the literature on temporal segmentation in the context

of HAR. It provides a look on different implementations and methodologies. A wide

range of terms and subtle differences are used in the field, such as ‘segmentation’, ‘change

detection’, ‘novelty detection’ and ‘outlier detection’. The following sections discuss

these different methods.

2.2.1 Segmentation methods overview

Methods that apply temporal segmentation on time series data can be roughly cate-

gorized in three different methods, as discussed by Avci et al. [6]. In that survey the

distinction between Top-Down, Bottom-Up, and Sliding-Window approaches is based on

the way data is processed by the algorithm. Since we are interested in on-line change

detection, the literature discussed in this section will mainly be forms of sliding-window

algorithms.

In Keogh et al. [41] a comparison of the aforementioned approaches is made. The research

also introduces the SWAB method, which combines the simple and intuitive approach of

the sliding-window approach with the (semi-)global view over the data from the bottom-

up method. Each segment is approximated by a Piecewise Linear Representation (PLR),

within a certain error. The user-provided error threshold controls the granularity and

number of segments.

Other methods have been proposed, such as an adaptive threshold based on the signal

energy by Guenterberg et al. [28], the adaptive CUSUM-based test by Alippi et al. [3]

and the Moving Sum (MOSUM) by Hsu [37] in order to eliminate this user dependency.

The latter of these methods is able to process the accelerometer values directly, although
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better results are obtained when features of the signal are processed, as done in the first

method [28]. Here the signal energy, mean and standard deviation are used to segment

activities and by adding all the axial time series together, the Signal-To-Noise ratio is

increased, resulting in a robuster method.

The method of Guenterberg et al. [28] extracts features from the raw sensor signal to base

the segmentation on other properties than the pure values. The method of Bernecker et

al. [11] uses other statistical properties, namely autocorrelation, to distinguish periodic

from non-periodic segments. Using the SWAB method the self-similarity of a one-

dimensional signal is obtained. The authors claim that only a slight modification is

needed to perform the method on multi-dimensional data. After the segmentation phase,

the method of Bernecker et al. [11] extracts other statistical features which are used in

the classification phase.

The proposal of Guo et al. [29] dynamically determines which features should be used for

the segmentation and simultaneously determines the best model to fit the segment. For

each of the three dimensions features such as the mean, variance, covariance, correlation,

energy and entropy are calculated. By extending the SWAB method, for every frame

a feature set is selected, using an enhanced version of Principal Component Analysis

(PCA). The research also considered the (Stepwise) Feasable Space Window as intro-

duced by [47], but since it results in a higher error rate than SWAB, the latter was

chosen to extend. Whereas the above mentioned algorithms use a linear representation,

this methods considers linear, quadratic and cubical representations for each segment.

This differs from other methods where the model is fixed for the whole time series, such

as [24], which is stated to perform inferior on non-stationary time series, such as those

from daily life.

The time series data from a sensor can be considered as being drawn from a certain

stochastic process. The CUSUM-methods instead follows a statistical approach and re-

lies on the log-likelihood ratio [31] to measure the difference between two distributions.

To calculate the ratio, the probability density functions need to be calculated. The

method of Kawahara et al. [40] proposes to estimate the ratio of probability densities

(known as the importance), based on the log likelihood of test samples, directly, without

explicit estimation of the densities. The method by Liu et al. [46] uses a compara-

ble dissimilarity measure using the Kullback-Leibler Importance Estimation Procedure

(KLIEP) algorithm. They claim this results in a robuster method for real-world scenar-

ios. Although this is a model-based method, no strong assumptions (parameter settings)

are made about the models.

The method of Adams and MacKay [56] builds a probabilistic model on the segment

run length, given the observed data so far. Instead of modeling the values of the data
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points, the length of segments as a function of time is modeled by calculating its posterior

probability. It uses a prior estimate for the run length and a predictive distribution for

newly-observed data, given the data since the last change point. This method differs

from the approach of Guralnik and Srivastava [30] in which change points are detected by

a change in the (parameters of an) fitted model. For each new data point, the likelihoods

of being a change point and part of the current segment are calculated, without a prior

model (and thus this is a non-Bayesian approach). It is observed that when no change

point is detected for a long period of time, the computational complexity increases

significantly.

Another application of PCA is to characterize the data by determining the dimensional-

ity of a sequence of data points. The proposed method of Berbič et al. [8] determines the

number of dimensions (features) needed to approximate a sequence within a specified

error. With the observation that more dimensions are needed to keep the error below

the threshold when transitions between actions occur, cut-points can be located and

segments will be created. The superior extension of their approach uses a Probabilistic

PCA algorithm to model the data from dimensions outside the selected set with noise.

In the method by Himberg et al. [35] a cost function is defined over segments of data.

By minimizing the cost function it creates internally homogeneous segments of data.

A segment reflects a state in which the devices, and eventually its user, are. The cost

function can be any arbitrary function and in the implementation the sum of variances

over the segments is used. Both in a local and global iterative replacement procedure (as

an alternative for the computationally hard dynamic programming algorithm) the best

breakpoint locations ci for a pre-defined number of segments 1 ≤ i ≤ k are optimized.

As stated before, often methods obtain an implicit segmentation as a result of clas-

sification over a sliding window. The method of Yang et al. [76] explicitly performs

segmentation and classification simultaneously. It argues that the classification of a pre-

segmented test-sequences becomes straightforward with many classical algorithms to

choose from. The algorithm matches test examples with the sparsest linear representa-

tion of mixture subspace models of training examples, searching over different temporal

resolutions.

The method of Chamroukhi et al. [14] is based on a Hidden Markov Model (HMM) and

logistic regression. It assumes a K-state hidden process with a (hidden) state sequence,

each state providing the parameters (amongst which the order) for a polynomial. The

order of the model segment is determined by model selecting, often using the Bayesian

Information Criterion (BIC) or the similar Akaike Information Criterion (AIC) [2], as

in [33].
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2.2.2 CUSUM

An other often used approach in the statistical framework of change detection is the

CUSUM as introduced by Page [54]. Originally used for quality control in production

environments, its main function is to detect change in the mean of measurements [10].

It is a non-Bayesian method and thus has not explicit prior belief for the change points.

Many extensions to this method have been proposed. Some focus on the change in

mean, such the method of Alippi and Roveri [3]. Others apply the method the problems

in which the change of variance is under consideration. Among others are there the

centered version of the cumulative sums, introduced by Brown, Durbin and Evans [12]

and the MOSUM of squares by [37].

The method of Inclán and Tiao [38] builds on the centered version of CUSUM [12]

to detect changes in variance. The obtained results (when applied to stock data) are

comparable with the application of Maximum Likelihood Estimates (MLE). Using the

batch Iterated Cumulative Sums of Squares (ICSS) algorithm they are able to find

multiple change points, offline while post-processing the data. Whereas CUSUM can be

applied to search for a change in mean, the ICSS is adapted to find changes in variance.

Let Ck =
∑k

i=1 α
2
t be the cumulative sum of squares for a series of uncorrelated random

variables {αt} of length T . The centered (and normalized) sum of squares is defined as

Dk =
Ck
CT
− k

T
, k = 1, . . . , T, with D0 = DT = 0. (2.1)

For a series with homogeneous variance, the value of Dk will oscillate around 0. This

Dk is used to obtain a likelihood ratio for testing the hypothesis of one change against

no change in the variance. In case of a sudden change, the value will increase and

exceed some predefined boundary with high probability. By using an iterative algorithm,

the method is able to minimize the masking effect of successive change points. The

proposal of [17] extends on the CUSUM-based methods to find change points in mean

and variance, by creating a more efficient and accurate algorithm.

One of the motivations for the ICSS algorithm was the heavy computational burden

involved with Bayesian methods, which need to calculate the posterior odds for the log-

likelihood ratio testing. The ICSS algorithm avoids applying a function at all possible

locations, due to the iterative search. The authors recommend the algorithm for analysis

of long sequences.



Chapter 2. Literature review 13

2.2.3 Novelty and Outlier detection

In the case of time series data, many approaches rely on the detection of outlier, or

novel, data objects. An increase in outlier data objects indicates a higher probability of

change, as discussed by Takeuchi and Yamanischi [62]. The concepts of novelty detection

and outlier detection are closely related and often used interchangeable.

The algorithm by Ma and Perkins [49] uses Support Vector Regression (SVC) to model

a series of past observations. Using the regression, a matching function V (t0) is con-

structed which uses the residual value of t0 to create an outlier (out-of-class) confidence

value. The method defines novel events as a series of observations for which the outlier

confidence is high enough. In an alternative approach by the same authors [48] a classi-

fication method, in contrast with regression, is used to detect outlier observations. The

latter approach uses the ν-Support Vector Machine (ν-SVM) algorithm by Schölkopf et

al. [58], which is further discussed in Section 2.4

A extensive overview of novelty detection based on statistical models is given by Markou

and Singh [49]. In the second part of their review [50], novelty detection by a variety

of neural networks is discussed. The survey by Hodge and Austin [36] distinguishes

between three types of outlier detection: 1) unsupervised, 2) supervised, and 3) semi-

supervised learning. As we will see in Section 3.2, in this research we are interested in

methods from Type 3, of which OCC is a member. More theoretical background on

outliers in statistical data is provided in the work by Barnett and Lewis [9].

2.3 Change-detection by Density-Ratio Estimation

Many approaches to detect change points monitor the logarithm of the likelihood ratio

between two consecutive intervals. A change point is regarded to be the moment in time

when the underlying probabilistic generation function changes. Some methods which

rely on this are novelty detection, maximum-likelihood estimation and online learning

of autoregressive models [40]. A limitation of these methods is that they rely on pre-

specified parametric models. Non-parametric models, for which the number and nature

of the parameters are undetermined, for density estimation have been proposed, but

it is said to be a hard problem [32, 61]. A solution to this is to estimate the ratio

of probabilities instead of the probabilities themselves. One of the recent methods to

achieve this is the KLIEP by Sugiyama et al. [60].

The proposed method by Kawahara and Sugiyama [40] uses an online version of the

KLIEP algorithm. It considers sequences of samples (rather than samples directly)
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because the time series samples are generally not independent over time. The method

detects change by monitoring the logarithm of the likelihood ratio between densities of

reference (past) and test (current) time intervals. If it exceeds a predetermined threshold

value, the beginning of the test interval is marked as a change point.

Since the density ratio is unknown, it needs to be estimated. The naive approach is

to estimate it using estimated densities of the two intervals. Since this is known to be

a hard problem and sensitive for errors, the solution would be to estimate the ratio

directly.

The method by Liu et al. [46] estimates the ratio of probabilities directly, instead of

estimating the densities explicitly. Other methods using ratio-estimation are the Un-

constrained Least-Squares Importance Fitting (uLSIF) method [39], and an extension

which possesses a superior non-parametric convergence property: Relative uLSIF (RuL-

SIF) [75].

2.4 Support Vector Machines in Change Detection

Many proposals in the field of HAR make use of SVMs as a (supervised) model learning

method. An elaborate overview of applications is given in [51]. In this section we review

methods of change detection based on the applications of SVMs as model construction

method. Schölkopf et al. [58] applies Vapnik’s principle never to solve a problem which

is more general than the one that one is actually interested in. In the case of novelty

detection, they argue there is no need for a full density estimation of the distribution.

Some algorithms estimate the density by considering how many data points fall in a

region of interest. The ν-SVM method instead starts with the number of data points

that should be within the region and estimates a region with that desired property. It

builds on the method of Vapnik and Vladimir [70], which characterizes a set of data

points by separating it from the origin. The ν-SVM method adds the kernel method,

allowing non-linear decision functions, and incorporates ‘softness’ by the ν-parameter.

Whereas the method in [70] focuses on two-class problems, the ν-SVM method solves

one-class problems.

The method introduced by Ma and Perkins [48] creates a projected phase of a time series

data, which is intuitively equal to applying a high-pass filter to the time series. The

projected phase of the time series combines a history of data points to a vector, which

are then classified by the ν-SVM method. The method is applied to a simple synthetic

sinusoidal signal with small additional noise and a small segment with large additional

noise. The algorithm is able to detect that segment, without false alarms.
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The algorithms of SVMs has been applied to the problem of HAR, as by Anguita et al.

[5]. In that research a multi-class classification problem is solved using SVMs and the

One-Vs-All method. The method exploits fixed-point arithmetic to create a hardware-

friendly algorithm, which can be executed on a smartphone.1

With the same concepts as ν-SVM, the SVDD method by Tax and Duin [64, 65] uses

a separating hypersphere (in contrast with a hyperplane) to characterize the data. The

data points that lie outside of the created hypersphere are considered to be outliers,

which number is a pre-determined fraction of the total number of data points.

The method by Yin et al. [78] uses the SVDD method in the first phase of a two-

phase algorithm to filter commonly available normal activities. The Support Vector

based Change Point Detection (SVCPD) method of Camci [13] uses SVDD applies it to

time-series data. By using an OC-SVM the method is able to detect changes in mean

and variance. Especially the detection of variance decrease is an improvement over other

methods that are unable to detect decreases in variance [62]. This main research subject

of this thesis is to apply the method of Camci [13] to sensor data (such as accelerometer

time series) obtained by on-body smartphones.

The following chapter discusses OCC, OC-SVM, and change detection through OC-SVM

in detail. It will show that the used implementation of OC-SVM is an example of the

Type 3 semi-supervised learning methods, in the system of Hodge and Austin [36].

1Smartphones have limited resources and thus require energy-efficient algorithms. Anguita et al. [4]
introduce a Hardware-Friendly SVM. It uses less memory, processor time, and power consumption, with
a loss of precision.
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Change detection by Support

Vector Machines

This chapter discusses the concepts and algorithms that will be used as a basis for the

proposed method, as introduced in Chapter 4. The first section formulates the problem

of change detection and relates it to outlier and novelty detection. It transforms the

traditional problem of outlier detection into change detection for times series data. In

Section 3.2 the problem of One-Class Classification is explained and discusses a number

of implementations. In the final sections of this chapter, Section 3.3, two SVM-based

OCC methods, ν-SVM and SVDD, and the influence of model parameters are further

discussed in detail.

3.1 Problem Formulation of Change Detection

The problems of outlier and novelty detection, segmentation, and change detection in

time series data are closely related. The terminology depends on the field of application,

but there are subtle differences. The problem of outlier detection is concerned with

finding data objects in a data set which have small resemblance with the majority of

the data objects. These objects can be regarded as erroneous measurements. In the

case of novelty detection these objects are considered to be member of a new class of

objects. The unifying framework of Takeuchi and Yamanishi [62], changeFinder, creates

a two stage process expressing change detection in terms of outlier detection. The first

stage determines the outliers in a time series by giving a score based on the deviation

from a learned model, and thereby creates a new time series. The second stage runs

on that new created time series and calculates a average over a window of the outlier

scores. The problem of change detection is then reduced to outlier detection over that

16
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average-scored time series. The implementation by Camci [13], SVCPD, implements

outlier detection with the SVDD algorithm to detect changes in mean and variance.

The problem of change point detection can be formulated using different type of models,

as discussed in 2.2.1. The methods by Takeuchi and Yamanishi [62] and Camci [13] use

the following formulation for change detection, which we will also use for our problem

formulation. The algorithm searches for sudden changes in the time series data. In other

words, slowly changing properties in the data are not considered to be changes. Consid-

ered a time series x1, x2, . . . , which is drawn from a stochastic process p. Each xt (t =

1, 2, . . . ) is a d-dimensional real valued vector. Assume p can be “decomposed” in two

different independently and identically distributed (i.i.d.) stationary one-dimensional

Gaussian processes p(1) and p(2). Consider a potential change point at time a. Data

points x1, . . . , xa−1 ∼ N (µ1, σ
2
1) = p(1) and xa, . . . , xt ∼ N (µ2, σ

2
2) = p(2). If p(1) and

p(2) are different (enough), then the time point t = a is marked as a change point.

Takeuchi and Yamanishi [62] expess the similarity between the stochastic processes with

the Kullback-Leibler (KL) divergence D(p2||p1). It is observed that their method is not

able to detect a change by decrease in variance [13, 62]. This problem is the motivation

for Camci [13] to create the SVCPD algorithm.

The definition of change point being sudden changes in the time series data is in line with

the search of changes in activities. Since we are only interested in different activities

(which are represented by sudden changes), slight changes within an activity are not of

interest.

3.2 One-Class Classification

As discussed in the previous section, change detection in time series can be implemented

using outlier, or novelty, detection. To regard a data point as an outlier, there must

be a model of the normal time series data and a (dis)similiarity measure defined over

the model and data objects. When a data point differs enough from the created model,

it can be labeled as an outlier. The class of OCC algorithms is especially designed for

that purpose. The algorithms build up a model of the data, assuming only normal data

objects are available (or a very limited amount of example outlier data objects). This

is also known as novelty detection or semi-supervised detection and is of Type 3 in the

system by Hodge and Austin [36]. This differs from classical classification algorithms,

which commonly rely of both positive and negative examples.
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In Section 3.2.1 the problem formulation of OCC methods is explained. In section 3.2.2

an overview of OCC methods is given. The following section will discuss one specific set

of methods, the OC-SVM which use SVMs to model the normal training data.

3.2.1 Problem formulation

The problem of One-Class Classification is closely related to the (traditional) two-class

classification situation1. In the case of traditional classification algorithms, the problem

is to assign an unknown object to one of the pre-defined categories. Every object i is

represented as a d-dimensional vector xi = (xi,1, . . . , xi,d), xi,j ∈ R. Using this notation,

an object xi thus represents one point in a feature space X ∈ Rd. The two classes

of objects, ω1 and ω2, are labeled −1 and +1 respectively. The objects with a label

yi ∈ {−1,+1} are in the training set (note that it can be both positive and negative

example objects). This problem is solved by determining a decision boundary in the

feature space of the data objects and label the new data object based on the location

relative to this boundary. This is expressed by the decision function y = f(x):

f : Rd → {−1,+1} (3.1)

In case of the OCC problem, only one class (often referred as the target class, or positive

examples) of training data is used to create a decision boundary. The goal is to determine

whether a new data object belongs to the target class. If it does not belong to the class

it is an outlier. One could argue that this problem is equal to the traditional two-

class problem by considering all other classes as negative examples, although there are

important differences. In pure OCC problems there are no negative example objects

available. This could be because the acquisition of these examples is very expensive, or

because there are only examples of the ‘normal’ state of the system and the goal is to

detect ‘abnormal’ states. Since the algorithm’s goal is to differentiate between normal

and abnormal objects (relative to the training objects), OCC is often called outlier,

novelty or anomaly detection, depending on the origin of the problem to which the

algorithm is applied2. The difference between two and one-class classification and the

consequence for outlier objects is illustrated in Figure 3.1. In the two-class classification

problem the object o will be member of the -1 class whilst the OCC problem will label

it as an outlier. In [63] a more detailed analysis of the OCC is given.

The OCC algorithms have been applied to a wide range of applications. The first is,

obviously, outlier detection of objects which do not resemble the bulk of the training

1Two-class problems are considered the basic problem, since multi-class classification problems can
be decomposed into multiple two-class problems [25].

2The term One-Class Classification originates from Moya et al. [52].
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Figure 3.1: This plot shows the difference between two and one-class classification.
The solid line indicates a possible decision boundary between the +1 and -1 example
objects. The dashed circle indicates the closed boundary around all the data objects.
In the first type the object o is considered to be member of the -1-class, whilst in the

latter (OCC) formulation it is an outlier.

data. It can be a goal by itself and can be used as a filtering mechanism for other data

processing methods. Often methods that rely on data characteristics are sensitive for

remote regions in the data set. Using OCC these remote regions can be removed from

the data set. A second application is for the problem as described above, in which only

data from a single target class is available. When this problems originates from e.g.

a monitoring process, the OCC is able to recognize abnormal system states, without

the need to create (or simulate) faulty states beforehand. The final possible application

given by Tax [63] is the comparison of two data sets. By constructing a OCC-classifier

using a training data set, one can compare that set to a new data set. This will result

in a similarity measure expressed in the properties of outliers. This is related to other

methods of expressing similarity, such as density-ratio estimation and the KL divergence

as discussed in Section 3.1.

3.2.2 One-Class Classification methods

The methods and algorithms used for the OCC-problem can be organized into three

categories [53, 63], visually represented in Figure 3.2. The first category consists of

methods that estimate the density of the training data and set a threshold on this den-

sity. Among those are Gaussian models, Gaussian Mixture Models (GMMs) and Parzen

density estimators. In order to get good generalization results with these methods, the

dimensionality of the data and the complexity of the density need to be restricted. This
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Figure 3.2: Overview of OCC methods categorized in Density Estimation, Recon-
struction methods, and Boundary methods. This categorization follows the definition

of Tax in [63].

can cause a large bias on the data. When a good probability model is postulated, these

methods work very well.

Boundary methods are based on Vapnik’s principle3 which imply in this case that es-

timating the complete data density for a OCC may be too complex, if one is only

interested in the closed boundary. Examples of methods that focus on the boundary (a

direct threshold) of the training data distribution are K-centers, Nearest-neighborhood,

and SVDD, or a combination of those methods [34]. Especially SVDD has a strong bias

towards minimal volume solutions. These type of methods are sensitive to the scale and

range of features, since they rely on a well-defined distance measure. The number of

objects that is required, is smaller than in the case of density methods. The boundary

method SVDD, constructed by Tax and which has shown good performance [42], will

be further discussed in Section 3.3.4.

Reconstruction methods take a different approach. Instead of focusing on classification

of the data and thus on the discriminating features of data objects, they model the

data. This results in a compact representation of the target data and for any object a

reconstruction error can be defined. Outliers are data objects with a high error, since

they are not well reconstructed by the model. Examples of reconstruction methods are

K-means, PCA and different kind of neural network implementations.

In [42, 53] an overview of applications for OCC-algorithms, and explictly for SVM-

based methods (such as SVDD and ν-SVM), is given. It shows succesful applications

3With a limited amount of data available, one should avoid solving a more general problem as an
intermediate step to solve the original problem [71].
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for, amonst others, problems in the field of Handwritten Digit Recognition, Face Recog-

nition Applications, Spam Detection and Anomaly Detection [45, 55]. As discussed in

Section 3.1, this can be used for change detection in time series data.

In this Section we have discussed the problem of OCC and different kind of implemen-

tations. An often used implementation is the SVM-based method [53], since is shows

good performance in comparitive researches [42, 59]. In the following section (3.3) two

implementations of OC-SVM will be discussed, the SVDD method of Tax and Duin [64]

and the ν-SVM-algoritm by Schölkopf.

3.3 One-Class Support Vector Machine

In this section we will discuss the details of an SVM and OC-SVM implementations.

The classical implementation of an SVM is to classify a dataset in two distinct classes.

This is a common use case, although sometimes there is no training data for both classes

available. Still, one would like to classify new data points as regular, in-class, or out-

of-class, e.g. in the case of a novelty detection. With that problem only data examples

from one class are available and the objective is to recognize new data points that are

not part of that class. This unsupervised learning problem is closely related to density

estimation. In that context, the problem can be the following. Assume an underlying

probability distribution P and a data point x drawn from this distribution. The goal is

to find a subset S of the input space, such that the probability that x lies inside of S

equals some predetermined value ν between 0 and 1 [58].

In the following of this section we will start with a discussion of traditional SVMs. In

Section 3.3.2 we will show how kernels allow for non-linear decision functions. That

is followed by two different implementations of OC-SVM: ν-SVM in Section 3.3.3 by

Schölkopf et al. [58], which closely follows the above problem statement regarding density

estimation, and SVDD by Tax and Duin [64] in Section 3.3.4. The final part of this

section discusses the influence of model parameters on the performance of SVMs

3.3.1 Support Vector Machine

We will first discuss the traditional two-class SVM before we consider the one-class

variant, as introduced by Cortes and Vapnik in [19]. Consider a labeled data set Ω =

{(x1, y1), (x2, y2), . . . , (xn, yn)}; points xi ∈ I in a (for instance two-dimensional) space

where xi is the i-th input data point and yi ∈ {−1, 1} is the i-th output value, indicating

the class membership.
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Figure 3.3: Visualization of an SVM in 2D. The non-linear boundary in the input
space I (left) is transformed to a linear boundary in the feature space F (right) by
mapping the data points with the function φ. The kernel trick uses a function K which

performs an implicit mapping. Image from Wikipedia.org

x ∈ I  φ(x) w · zz ∈ F y ∈ I

Figure 3.4: Schematic visualization of the non-linear mapping of SVMs. The input
vector x from input space I is mapped by a non-linear function φ(x) to a feature vector
z in the high dimensional feature space F . The weights of w create a linear separating

hyperplane, which maps the high dimensional vector to the predicted outcome y.

An SVM can create a boundary between linear-separable data points, making it a binary

linear classifier. More flexible non-linear boundaries can be obtained by the use of a

non-linear function φ(x), as illustrated in Figure 3.3. This function maps the input data

from space I to a higher dimensional space F . The SVM can create a linear separating

hyperplane in the space F that separates the data points from the two classes. When the

hyperplane is projected on to the (lower) original input space I it creates a non-linear

separating curve. A schematic overview of this process is illustrated in Figure 3.4. The

original data points x ∈ I are projected by φ(x) to the points z ∈ F . In that space the

linear hyperplane is constructed by weights w. This results in a non-linear hyperplane

y in input space I. The mapping and projection of data points can be efficient (and

implicit) performed by using the kernel trick, which is discussed in Section 3.3.2.

The separating hyperplane is represented by

wTx+ b = 0, (3.2)

with w ∈ F and b ∈ R. The hyperplane that is created determines the margin between

the classes; the minimal distance from the data points to the hyperplane. In geometric
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Figure 3.5: Illustration of the separating hyperplane of an SVM. Here w is the nor-
mal vector for the separating hyperplane and size of the margin is 2

‖w‖ . Image from

Wikipedia.org

sense, w is the normal vector indicating the direction of the hyperplane and b
‖w‖ de-

termines the offset of the hyperplane from the origin. Since the size of the margin is

equal to 2
‖w‖ , the maximum-margin hyperplane is found by minimizing ‖w‖. The data

points which lie on the boundary of the margin are the support vectors. This geometrical

interpretation is illustrated in Figure 3.5. All data points for which yi = −1 are on one

side of the hyperplane and all other data points (for which yi = 1) are on the other side.

The minimal distance from a data point to the hyperplane is equal for both classes.

Minimizing ‖w‖ results in a maximal margin between the two classes. Thus, the SVM

searches for a maximal separating hyperplane.

With every classification method there is a risk of overfitting. In that case the random

error or noise of the data set is described instead of the underlying data. The SVM

classifier can use a soft margin by allowing some data points to lie within the margin,

instead of on the margin or farther away from the hyperplane. For this it introduces

slack variables ξi for each data point and the constant C > 0 determines the trade-off

between maximizing the margin and the number of data points within that margin (and

thus the training errors). The slack variables are a generalization to minimize the sum of

deviations, rather than the number of incorrect data points [18]4. The objective function

for an SVM is the following minimization function:

4if ξi is chosen to be an indicator function, it still minimizes the number of incorrect data points.
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min
w, b, ξi

‖w‖2

2
+ C

n∑
i=1

ξi (3.3)

subject to:

yi(w
Tφ(xi) + b) ≥ 1− ξi for all i = 1, . . . , n

ξi ≥ 0 for all i = 1, . . . , n
(3.4)

This minimization problem can be solved using Quadratic Programming (QP) and scales

in the number of dimensions d, since w ∈ Rd. In its dual formulation, as shown in

Equation (3.5), the non-negative Lagrange multipliers αi are introduced. Using this

formulation the problem scales in the number of data points n, since α ∈ Rn. Solving

this problem directly in the high dimensional feature space F makes it intractable. It

is shown that solving the dual formulation is equivalent to solving the primal form [18].

The linear classifier decision function in the dual form is optimized over αi:

f(x) = sgn(
n∑
i=1

{αiyiK(x, xi) + b}), (3.5)

where K(x, xi) = φ(x)Tφ(xi) is the dot product of data objects in feature space F (which

is further discussed in Section 3.3.2). Here every data point in I for which ai > 0 is

weighted in the decision function and thus “supports” the classification machine: hence

the name “Support Vector Machine”. Since it is shown that under certain circumstances

SVMs resembles sparse representations [26, 59], there will often be relatively few La-

grange multipliers with a non-zero value.

Using this formulation two important properties arise [23]:

1. Searching for the maximum margin decision boundary is equivalent to searching

for the support vectors; they are the training examples with non-zero Lagrange

multipliers.

2. The optimization problem is entirely defined by pairwise dot products between

training examples: the entries of the kernel matrix K.

An effect of the first property, combined with the equality to sparse representations, is

that SVMs often have good results, even in the case of high dimensional data or limited

training examples [18]. The second property is what enables an powerful adaptation of

SVMs to learn non-linear decision boundaries. The workings of the kernel matrix K and

the non-linear boundaries are discussed in the following section.
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3.3.2 Kernels

In the previous section, the mapping function φ(x) and the kernel function K were briefly

mentioned. The decision function in Equation (3.5) only relies on the dot products of

mapped data points in the feature space F (i.e. all pairwise distances between the data

points in that space). It shows [23] that for any function K that corresponds to a dot

product in feature space F , without an explicit mapping to the higher dimension F ,

the dot products can be substituted by that kernel function K. This is introduced by

Aizerman et al. [1] and applied to Support Vector Classifiers (SVCs) by Vapnik [71],

known as the ‘kernel trick’:

K(x,x′) = (z · z′) = φ(x) · φ(x′) (3.6)

where vectors z and z′ are projections of data objects x and x′ through φ(x) on the

features space F . Note that the evaluation of dot products in the feature space F
between vectors is performed indirectly via the evaluation of the kernel K between

(support) vectors in the input space I. This is gives the SVM the ability to create

non-linear decision function without high computational complexity.

The kernel function K can have different forms, such as linear, polynomial and sigmoidal

but the most used (and flexible) form is the Gaussian Radial Base Function (RBF). The

inner product kernel with RBF basis functions have the form

K(x,x′) = exp

{
−‖x− x

′‖2

2σ2

}
, (3.7)

where σ defines the Gaussian width and ‖x − x′‖2 is the dissimilarity in Euclidean

distance.

The kernel K maps input space I to the feature space F which is a Reproducing Kernel

Hilbert Space (RKHS) of (theoretically) infinite dimensions. As Smola et al. [59] state,

this Gaussian kernel yields good performance, especially when no assumptions can be

made about the data. As an explanation, they show a correspondence between learn-

ing SVMs with RBF kernels and regularization operators. This may give insights in

why SVMs have been found to exhibit high generalization ability (by learning with few

training objects).

The width parameter σ is equal for all kernel functions and is set a priori and determines

the flexibility and complexity of the boundary. In Section 3.3.5 this (hyper)parameter

for an SVM is further discussed.
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The mapping from input space I to F via φ(x) is subject to some continuity assumptions.

This general assumption in pattern recognition, states that two near objects in feature

space should also resemble each other in “real life” [63]. Thus, objects which are close

in feature space should be close in the original input space. When this assumption does

not hold, the example objects would be scatter through the feature space and finding a

decision function becomes very complex.

3.3.3 ν-Support Vector Machine

The first of the OC-SVM methods we will discuss is often referred to as ν-SVM and

introduced by Schölkopf et al. [58]. Instead of estimating the density function of an

distribution P , it focuses on an easier problem: the algorithm finds regions in the input

where the “probability density lives”. This results in a function such that most of the

data is in the region where the function is non-zero.

The constructed decision function f(x) resembles the function discussed in Section 3.3.1.

It returns the value +1 in a (possibly small) region capturing most of the data points,

and −1 elsewhere. The method maps the data points from input space I to a feature

space F (following classical SVMs). In that space the data points are separated from

the origin by a hyperplane, with maximal margin. Since the mapping to the feature

space is based on dot products of the data points, outlier objects (which are dissimilar

from the training set) will be closer to the origin. Thus, maximizing the distance from

the hyperplane to the origin increases the discriminating ability of the decision function.

Furthermore, it holds an intuitive relationship with the classical two-class SVM.

For a new data points x, the function value f(x) determines whether the data point is

part of the distribution (i.e. the value is +1) or a novelty (i.e. the value is −1). The

hyperplane is represented by g(x) = w · φ(x) + ρ = 0 and the decision function is

f(x) = sgn(g(x)). This hyperplane and the separation from the origin is illustrated in

Figure 3.6.

The objective function to find the separating hyperplane is the following minimization

function, which can be solved using QP:

min
w, ξi, ρ

‖w‖2

2
+

1

νn

n∑
i=1

ξi − ρ (3.8)
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ξi / |w|

x

y

ρ / |w|

Figure 3.6: Graphical representation of ν-SVM. The separating hyperplane w ·φ(xi)+
ρ = 0 create a maximal margin, in the feature space, between the data points and the

origin. Slack variables ξi are used to create a soft margin.

subject to:

(w · φ(xi)) ≥ ρ− ξi for all i = 1, . . . , n

ξi ≥ 0 for all i = 1, . . . , n
(3.9)

The decision function in the dual formulation with Lagrange multipliers is denoted as:

f(x) = sgn((w · φ(xi))− ρ) = sgn(
n∑
i=1

αiK(x, xi)− ρ) (3.10)

In the classical SVM objective function, as denoted in Equation (3.3), the parameter

C decided the smoothness of the boundary, with respect to the slack variables ξi. In

the formulation of ν-SVM the equivalent parameter is ν ∈ (0, 1) (hence the name). It

characterizes the solution in two ways:

1. ν is an upper bound on the fraction of outliers, i.e. training examples regarded as

out-of-class.

2. ν is a lower bound on the fraction of Support Vectors (SVs), i.e. training examples

with a non-zero Lagrange multiplier αi.

When ν approaches 0, the penalty factor for non-zero Lagrange multipliers ( 1
νn) becomes

infinite, and thus the solution resembles a hard margin boundary.
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Figure 3.7: Graphical representation of the difference between ν-SVM (left) and
SVDD (right). Note that for the sake of simplicity the kernel functions are not applied.

This method creates a hyperplane, characterized by w and ρ, that separates the data with

maximal margin from the origin in the feature space F . In the following section we will

discuss an alternative method, which uses an circumscribing hypersphere to characterize

the training data. The region inside the hypersphere indicates the region S where the

probability that a data point drawn from P is equal to ν.

3.3.4 Support Vector Data Description

The method introduced by Tax and Duin [64], known as Support Vector Data Descrip-

tion, follows a spherical instead of planar approach. The boundary, created in feature

space F , forms a hypersphere around the (high density region of the) data. The volume

of this hypersphere is minimized to get the smallest enclosing boundary. The chance

of accepting outlier objects is thereby also minimized [67]. By allowing outliers using

slacks variables, in the same manner as classical SVM and ν-SVM, a soft margin is

constructed.

The constructed hypersphere is characterized by the center a and radius R > 0 as

distance from the center to (any data point that is a SV on) the boundary, for which the

volume, and thus the radius R, will be minimized. The center a is a linear combination

of the support vectors. Like the classical SVM and SVDD it can be required that all the

distances from the data points xi to the center a are strict less than R (or equivalent

measure). A soft margin can be allowed by using slack variables ξi. In that case,

the penalty is determined by C and the minimization is expressed as Equation (3.11).

This principle is illustrated in the right image or Figure 3.7. Instead of a separating

hyperplane, constructed by ν-SVM and illustrated on the left of the Figure, the SVDD

creates a hypersphere (in the illustration a circle) around the data points. By using

kernel functions (e.g. the RBF) the hyperspheres in the high dimensional feature space

F corresponds to a flexible and tight enclosing boundary in input space I. Possible
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resulting closed boundaries are illustrated in Figure 3.8. This enclosing boundary is

obtained by minimizing the following error function L which contains the volume of the

hypersphere and the distance from the boundary to the outlier objects:

L(R,a, ξ) = R2 + C
n∑
i=1

ξi (3.11)

subject to:

‖xi − a‖2 ≤R2 + ξi for all i = 1, . . . , n

ξi ≥ 0 for all i = 1, . . . , n
(3.12)

In the dual Lagrangian formulation of this error function L the multipliers α are maxi-

mized:

L =
∑
i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) (3.13)

subject to:

0 ≤ αi ≤ C,
∑
i

αi = 1
(3.14)

In the maximization of Equation (3.13) a large fraction of the multipliers αi become

zero. The small fraction for which αi > 0 are called the SVs and these objects lie on the

boundary of the description. The center of the hypersphere only depends on this small

number of SVs and the objects for which αi = 0 can be discarded from the solution.

Testing the membership of a (new) object z is done by determining if the distance to

the center a of the sphere is equal or smaller to the radius R:

‖z − a‖2 = (z · z)− 2
∑
i

αi(z · xi) +
∑
i,j

αiαj(xi · xj) ≤ R2 (3.15)

As with Equation (3.5), the solution of this equation only relies on dot products between

the data points in x and z. This means that the kernel projection and trick, as discussed

in Section 3.3.2, can be applied to SVDD as well [64, 66].

Because the Gaussian RBF often yields good (i.e. tight) boundaries, this set of kernels

functions is commonly used:

(x · y)→ K(x,y) = exp

(
−‖x− y‖

2

σ2

)
(3.16)
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Figure 3.8: The SVDD method trained on a banana-shaped data set with different
sigma-values for the RBF kernel. Solid circles are support vectors, the dashed line is

the boundary. Image by Tax [63].

Using this kernel function, the Lagrangian error function L of Equation (3.13) changes

to:

L = 1−
∑
i

α2
i −

∑
i 6=j

αiαjK(xi, xj) (3.17)

Using Equation (3.15), the following kernel formulation needs to hold for a new object

z to lie within the hypersphere:

∑
i

αiK(z, xi) ≤
1

2

1−R+
∑
i,j

αiαjK(xi, xj)

 (3.18)

When the Gaussian RBF kernel is applied, and in case the data is preprocessed to

have unit length (for the ν-SVM solution), the two different OC-SVM implementations

ν-SVM and SVDD are shown to have identical solutions [57, 66]

3.3.5 SVM model parameters

SVM-model selecting and tuning depends on two type of parameters [18]:

1. Parameters controlling the ‘margin’ size,

2. Model parameterization, e.g. the kernel type and complexity parameters. For the

RBF kernel the width parameter determines the model complexity.

In case of a RBF kernel, the width parameter σ determines the flexibility and complexity

of the boundary. The value of this parameter greatly determines the outcomes of the

algorithm (e.g. SVDD) as illustrated in Figure 3.8. With a small value for the kernel

width σ, each data point will tend to be used as a support vector (for almost all αi >

0) and the SVDD solution resembles a Parzen density estimation. For large values

of σ, the solution will resemble the original hypersphere solution (in contrast with a

tight boundary around the data). With a large value for the width σ, the boundary

approximates the spherical boundary. The influence of the σ parameter on the SVDD

solution is illustrated in Figure 3.9.
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Figure 3.9: The SVDD method trained on a banana-shaped data set with different
σ-values for the RBF kernel. Solid circles are support vectors, the dashed line is the

boundary.

As discussed in Section 3.3.3, the SVM parameter C (or ν in case of ν-SVM) is of high

influence on the “smoothness” of the decision function. It acts as an upper bound to

the fraction of outliers and as a lower bound to the fraction of SVs. A more detailed

discussion of the influence of the SVM model parameters can be found in Section 9.8 of

[18] and Section 7.4 from [23]. A detailed discussion of the ν and kernel parameters can

be found in [57].

The following chapter will discuss our proposed method, which incorporates the SVDD

algorithm. It relates the OC-SVM model construction to outlier detection and eventually

change detection, leading to finding a temporal segmentation of time series data.



Chapter 4

Application to Human Activity

Time Series Data

This chapter will introduce our method, which we named OCS-HATS [73], and setup for

the temporal segmentation of human activities, using an OC-SVM approach. It shows

our method to apply a OC-SVM based temporal segmentation method to inertial sensor

time series data, often used in the context of Human Activity Recognition. As far as we

know it is the first in its kind, especially on the application of SVDD and SVCPD to real-

world HAR data. The setup follows the structure as illustrated in Figure 4.1 and further

discussed in Section 4.1. It starts with the data collection phase, in which we both use

artificial and real-world data. The data sets are discussed in Section 6.2. After (optional)

pre-processing, the SVDD algorithm is used to create a model representation, which is

2. Pre-processing
 a) Align sensor streams
b) Normalize sensor streams

3. Initialize SVDD model 4. Model updating

Extract properties

Radius Outliers

Indication of change

Ratio-
Thresholding CuSum

5. Interpret properties

6. Post-processing

1. Data Gathering

Real-world data

Magnetic fieldRotationAccelerometer

Artificial data

Takeuchi & Yamanishi Camci

7. Change points

Figure 4.1: Schematic overview of the change detection method. The first step is
the data gathering, described in Section 4.2. Ater the pre-processing, the data is used
to construct a SVDD model, as described in Section 4.3. Section 4.4 describes which
features of the model are used for the final change indication algorithm, discussed in

Section 4.5.

32
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iteratively updated. In Section 4.3 this construction phase is discussed and shows the

windowed approach. From this constructed model we can extract some features. In our

case, we use the approximated radius R of the hypersphere to detect changes. Section 4.4

goes into detail about the rationale of using that feature. Finally, in Section 4.5 we

discuss two different, but simple, methods to detect changes in the time series data,

based on the extracted radius R.

4.1 Algorithm overview

The proposed method of this thesis follows the unifying framework as introduced by

Takeuchi and Yamanishi [62] and an similar implementation by Camci [13] with SVMs.

The unifying framework relates the detection of outliers with change points and divides

the whole process in two stages. The first stage determines the outliers in a time series

by giving a score based on the deviation from a learned model, and thereby creates a

new time series. The second stage runs on that new created time series and calculates

an average over a window of the outlier scores. The problem of change detection is

then reduced to outlier detection over that average-scored time series. This method is

named changeFinder by the authors. The implementation by Camci, which uses SVMs

to detect changes is named Support Vector based Change Point Detection.

Whereas changeFinder uses a two-stage probability based algorithm, our approach fol-

lows SVCPD by constructing an SVM over a sliding window. The SVCPD algorithm uses

the location of new data points in the feature space F with respect to the hypersphere

and the hypersphere’s radius R to determine whether the new data point represents a

change point. Our approach is a slight simplification of the algorithm: we only use the

updated model properties (i.e. the radius R) to detect a change. The SVCPD also tests

every new data point with the current modeled hypersphere, to indicate whether it is

an outlier. This difference is further discussed and justified in Section 4.5.

This section gives a description of the method used for the experiments and change

detection mechanism. First described is the method to process the gathered sensor

data. A schematic overview is given in Figure 4.1 and shows the steps of the method. A

more detailed explanation of the “Update model” step is given in the remainder of this

section.

As graphically represented in Figure 4.1, the change detection method starts by process-

ing the data from sensor, such as the accelerometer, magnetic orientation, and rotation

metrics.
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The first step is to process the raw streams of data originating from a multiple of sensors.

The two processes applied are alignment and normalization. Due to noisy sampling, not

all the timestamps in the data streams are sensed at the same timestamp. Since the

SVDD method requires all the data stream at every timestamp and can not handle

missing data on one of the timestamps, all the unique timestamps are filtered out.

Whilst this results in an overall filtering effect, in practice between 1% and 5% of each

data stream is discarded. The effect of this filtering is not significant and the data is

not modified.

Due to the nature of the sensor signals, a normalization step is required in order to set

the weight for all the data streams equal. The range of the accelerometer signal typically

spans −20 to 20 m/s2, the magnetic field from −60 to 60 µT and the rotations value

range is from −1 to 1. This means that a relative small change in the accelerometer

stream could have a much larger impact on the model than the same (absolute) change

in the rotation stream, whilst the latter has a larger relative impact. The normalization

step ensures that all data is weighted equally and changes in the data are all proportional.

In step 3 the SVDD model is initialized. The first full window over the data stream

is used to construct an initial model. During the initialization the parameters for the

SVDD are provided, begin the kernel type (radial), RBF with σ and the outlier-fraction

C.

Step 4 is executed for every step-size s data points in the stream. Every update the

oldest s data points are removed from and s new data points are added to the SVDD

model. The Incremental Support Vector Data Description (I-SVDD) algorithm by Tax

and Duin [66] is used for efficient incremental model updating. The model is (partially)

reconstructed and new model properties, such as the radius of the hypersphere, is the

result of this step 1.

This final step of this method, step 5, is the interpretation of the model properties.

Many algorithms can be used for this process, all which take a one-dimensional time

series as input and determine where change has occurred. In our setup we used the

Ratio-Thresholding (RT) and CUSUM methods, to show the modularity of this step.

This final step is further discussed in Section 4.5.

1Other measures are also possible, for instance the distance from all the outliers to the boundary of
the hypersphere or the number of outliers
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4.2 Data Gathering

In this section we briefly discuss the different data gathering methods used for the change

detection algorithms and experiments. Section 4.2.1 discusses the artificial data sets we

will use. In Section 4.2.2 an overview of the real-world data sets used is provided. Both

sections refer to Chapters 5 and 6 for more details, respectively.

4.2.1 Artificial data

In order to provide an objective, quantitative, comparison to other methods, we will

use artificial data sets which are also used in the earlier work on which OCS-HATS is

based. These are the data sets used by Takeuchi and Yamanishi [62] and Camci [13].

Both construct a collection of one-dimensional time series data according to a second

order Autoregressive (AR) model:

xt = a1xt−1 + a2xt−2 + εt. (4.1)

Over the different data series the mean and variance of the Gaussian random variable εt

differs and changes at pre-determined change points. Using this data set an quantitative

quality measure over the change detection methods can be obtained and compared. All

the used data sets are listed and analyzed in Chapter 5.

4.2.2 Real-world data

In the second type of data sets we apply our method for change detection and temporal

segmentation to real-world data sets. We record the activities of humans in real-world

environments, both in- and outdoor. Activities performed include sitting, standing,

walking, running in a straight and curved line, and walking up- and downstairs. OCS-

HATS uses the signals from the accelerometer, magnetic field, and rotation sensors.

These time series data are used to detect change points. A video recording from the

performed activity is used to annotate the time series with real change points. The

discovered change points are compared with these annotated change points to give a

qualitative quality measure. In Chapter 6 we give a detailed analysis of the performed

activities and the recorded data sets.

For the experiments we used a smartphone with inertial sensors as recording device.

The activities were recorded using a free Android application Sensor Logger2. This

application was chosen for its convenient data format of the sensor recording and its

2https://play.google.com/store/apps/details?id= com.kzs6502.sensorlogger
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Table 4.1: Measured sensor metrics. The set of axis is always the triple (x, y, z)
direction.

Sensor metric Description Units of measure Typical range

Accelerometer Acceleration force along
each axis (including
gravity).

m/s2 −20 – 20

Gravity Force of gravity along each
axis.

m/s2 −10 – 10

Gyroscope Rate of rotation around
each axis.

rad/s −15 – 15

Light Light sensitive sensor at
the front of the phone.

0 – 10000

Linear acceleration Acceleration force along
each axis (excluding
gravity).

m/s2 −20 – 20

Magnetic field Geomagnetic field strength
along each axis.

µT −60 – 60

Orientation Degrees of rotation around
the three physical axis.

Degrees −100 – 360

Rotation Measure of rotation
around the device’s
rotation axis.

Unitless −1 – 1

regularity of the sampling interval. Table 4.1 lists all the recorded metrics. For our

experiments we used the data for the accelerometer, magnetic field and rotation.

We implemented our algorithm in Matlab. For the SVDD model construction phase

we used the dd tools library by Tax [68], which depends on the PR tools package,

originating from the book by Van Der Heijden et al. [69]. Alternatively, the widely used

LibSVM [15] add-on for the SVDD algorithm by Chang et al. [16] can be used.

4.3 Model Construction: Incremental SVDD

After the data is collected (or in the case of the artificial data sets: generated), we con-

struct an online incremental sliding window algorithm. We follow the SVCPD method

by Camci [13] and the I-SVDD implementation by Tax and Laskov [67]. The latter

algorithm combines the techniques of online, unsupervised, and incremental learning

methods with the earlier introduced OC-SVM algorithm SVDD. The method is initial-

ized with a fixed window length and then at every step a new data object is added to and

the oldest data object is removed from this working set. The model construction phase
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can be regarded as the first stage of the unifying framework by Takeuchi and Yamanishi

[62].

Using the following abstract form of the SVM optimization problem, the extension of

the incremental SVM to the SVDD can be carried out:

max
µ

min
0≤x≤C

aTx+b=0

: W = −cTx+
1

2
xTKx+ µ(aTx+ b), (4.2)

where c and a are n × 1 vectors, K is a n × n matrix and b is a scalar. The SVDD

implementation of this abstract form is set by the parameters c = diag(K), a = y and

b = 1. The procedure for the incremental version has two operations for a data object

k: add to and remove from the working set. When a data object k added, its weight xk

is initially set to 0. In case of an object removal, the weight is forced to be xk = 0. Both

the operations conclude with the recalculation of µ and the weights x for all the objects,

in order to obtain the optimal solution for the enlarged or reduced data set. These two

operations are the basis for I-SVDD. With the data points ordered by timestamp, new

data objects are added to and old data objects are removed from the working set.

The size of the initial window of data objects has a lower bound determined by the

hyperparameter C (Equation (3.11)). Because of the equality constraint
∑n

i=1 aixi = 1

and the box constraint 0 ≤ xi ≤ C, the number of objects in the working set must

be at least d 1C e. Thus the algorithm is initialized by selection the first d 1C e objects for

the working set. In every loop of the algorithm the number of elements added are at

least enough to keep d 1C e objects in the window, after removing the oldest objects. The

optimality of the algorithm is proved by analysis of the Karush-Kuhn-Tucker (KKT)

conditions [67].

From experiments it shows that the (online) I-SVDD method results in less false alarms

than the static SVDD. An explanation for this is that I-SVDD follows the changing data

distribution, i.e. small changes over time. Such changes are a drift in mean or increase

in frequency. The I-SVDD algorithm continuously re-models the SVM representation.

This re-modeling of the SVM representation is beneficial for our purpose, since we are

only interested in sudden changes between activities. The following section will discuss

the features extracted from the constructed OC-SVM model at every loop-step of the

algorithm, and Section 4.5 describes how these features are used to detect change.
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4.4 Model Features

In the previous section we have discussed the I-SVDD method, which creates a OC-SVM

representation of a working set of data objects at every step of the algorithms loop. This

section shows how we interpret the constructed model and extract features to obtain a

measure which can be used for an indication of change points. The next section discusses

how this obtained measure is used to indicate change.

The I-SVDD algorithm creates a spherical OC-SVM representation of the working set

at every step of the algorithm. This model is obtained by the minimization of Equa-

tion (3.11), which incorporates the radius R of the sphere and the distances ξ from the

outliers to the boundary. We will use the radius R of the hypersphere as an indication

of change.

In [66] Tax and Duin provide an analysis of the error of the SVDD algorithm. This error

is based on 1) the fraction fT− of target objects that is rejected, and 2) the fraction

fO+ of outliers that is accepted. Since in OCC situations typically there are (almost) no

examples of outlier objects, Tax and Duin construct a method to generate outliers based

on the assumption that the the location of (potential) outliers are uniformly distributed

around the target set. To minimize the error, calculated by the fractions fT− and fO+, we

should minimize the volume of the target data description (i.e. the boundary of SVDD).

That is because the fraction of accepted outliers fO+ is an estimate of the volume

of the target data description, with respect to the volume of the outlier distribution.

Tax and Duin provide a method to optimize the parameters of the SVDD method,

i.e. the trade-off parameter C and the RBF kernel width σ. This optimization will

result in the modification of the radius R of Equation (3.11) and affects the Lagrangian

inequality (3.18).

Since in our method the parameters C and σ are kept constant, and thereby also the

fraction of target objects being rejected, the only free parameter is the radius R. During

the I-SVDD algorithm the volume of the hypersphere is minimized. This means that

only the radius of the sphere will change during the analysis over the time series data.

We will interpret changes in the radius R with the same continuity assumptions as

mentioned in Section 3.3.2.

For instance, consider two hyperspheres that model two different, but partially overlap-

ping, working sets of objects. If the radius size of these two hyperspheres are close to

each other, that means the distribution of objects in the sets are also similar. In other

words, if the distribution over objects in a working set changes, so does the characteris-

tics of the set, and the radius R of the hypersphere will also change. If in the case of a

change in distribution the data objects in the working set become more heterogeneous,
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edcba

Time series data

Expected Radius

Figure 4.2: Expected behavior of the radius R of the hypersphere. The upper part
shows a typical sinusoidal time series signal. The lower graph visualizes an abstract
expectation of the values of R. Five possible time windows are illustrated. Windows a,
c and e cover an area of homogeneous signal. The expected value of R is low. The other
two windows, b and d cover a change entering and leaving the window, respectively. At

these locations the radius R is expected to increase temporarily.

the radius of the hypersphere will increase. When, instead, the data objects change

from a heterogeneous set to a more homogeneous, we expect the radius to decrease in

value, since the data objects are closer to each other in the feature space. This relation

between the signal and expected radius R is illustrated in Figure 4.2. It shows that in

the two time windows that cover a heterogeneous set of data objects, the radius of the

hypersphere is expected to be relatively high.

With the I-SVDD algorithm we have effectively implemented a form of dimensionality

reduction by feature extraction, using the radius R. The following section discusses the

algorithms which can be applied to the extracted radius R as a volume estimate. We

thereby follow the setup of the unifying framework by Takeuchi and Yamanishi [62], of

which this section described the first stage.

4.5 Change Detection

In the previous sections we have discussed what data is used for the model construction,

and how that model is interpreted in the context of change detection. We have shown

how the multi-dimensional signal is reduced to a single dimension time series data, based

on the extracted radius R from the constructed hypersphere. This metric is used to

discover changes in the underlying data generation process. We argued that in the case

the data objects set becomes more heterogeneous, we expect an increase in the radius

R. In the same manner we expect that when the change is in the oldest data objects of

the working set, the radius R will decrease, since the data becomes more homogeneous.

An abstract representation of these expectations is illustrated in Figure 4.2.
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In this section we discuss the methods applicable to the extracted radius R of the

hypersphere, in order to discover a change in the underlying distribution properties.

It is the second stage of our algorithm, analogue to the second stage of the unifying

framework by Takeuchi and Yamanishi [62]. It is also based on the SVCPD method by

Camci [13], although we have simplified the algorithm.

In the SVCPD the first step for a new data point z is to check whether the data point

lies within the enclosing (hyperspherical) boundary of the constructed model. This will

label the new data point as an in- or outlier, relative to the current data set. Depending

on that outcome, the model is updated to include the new data point. The second

step is to inspect the (changed) model properties, i.e. the radius R. In OCS-HATS we

only employ the second step: the inspection of the radius R. We regard the first step

(determine if z is an outlier) to be superfluent: in case it is an outlier, the model update

step will change the radius R in order to let the boundary include the new data point z.

Would the new data object z be already an inlier, then the updated model would not

have a significant change in radius R. Our algorithm is outlined in Algorithm 1.

Algorithm 1 One-Class SVM Human Activity Temporal Segmentation algorithm.

Input: time series X, window size n, thresholds thlow and thhigh, proximity factor δ
Output: collection change points

1: change points← empty collection
2: radii← empty collection
3: Initialize w ← incremental svdd with first n samples from x

4: while new sample x from X at time t do

5: Add x to w
6: sphere← update hypersphere(w)
7: radius← extract radius(sphere)
8: radii[t]← radius

9: ~← calculate ratio from previous average radii and current radius

10: if ~ < thlow or ~ > thhigh then
11: Add current time t to change points
12: Empty previous radii
13: end if

14: Remove oldest x from w
15: end while

16: Merge cp based on proximity δ

The problem of change detection in complex multi-dimensional time series is now reduced

to finding change in a one-dimensional time series. Besides the dimensionality reduction,



Chapter 4. Application to Human Activity Time Series Data 41

the form of the signal is also simplified. Whereas the original signal was represented as

a sinusoidal or second order AR model, the new time series is of much simpler form. In

our method we leave open the precise method which is used to find change points in

the obtained change indication values. Below, we will gives two examples of methods

which can be applied. The first is a family of methods based on the CUSUM method.

The second example is a ratio-based thresholding mechanism used by Camci [13]. We

conclude this section by discussing some post-processing techniques we have used, to

decrease the number of false positives.

4.5.1 CUSUM based methods

Many of the simple change detection methods are based on CUSUM, originally intro-

duced by Page [54]. Other variations and extensions of the method are proposed and

used ([3, 37, 38]). Here we will discuss the simple form, which only detects changes as

an increase in value of the examples, in this case the radius R. The cumulative sum for

all the values is calculated:

Sn =

n∑
k=0

Rk (4.3)

and a change is detected when the value of the cumulative sums minus the minimum

encountered exceeds a predetermined threshold h:{
Sn − min

0≤i<n
Si

}
≥ h. (4.4)

Extensions of the CUSUM method have been proposed. Amongst others, extensions

which extend its use to two-threshold methods, and methods appropriate for changes in

mean or variance [38]. Whilst adaptive methods have been proposed [3], most methods

require manual determination of the threshold parameter h.

4.5.2 Ratio-thresholding

The second example of an algorithm that interprets the change indication time series

and transforms it to change detection is the radius ratio thresholding method used by

Camci [13]. The method shares characteristics with CUSUM, since it relies on summa-

tion of historic data and thresholds for change detection. The method calculates the

radius ratio ~t by taking the ratio of the current radius rt at time t to the average radii

since the last change point y:

~t =
rt

mean(ry:t−1)
, (4.5)
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Figure 4.3: Abstract illustration of the radius ratio thresholding. The peak at t1
generates a single change point. The region between t2 and t3 generates multiple

change points, since the value of ~t keeps increasing.

where mean(ry:t−1) is the average of the previous approximated radii. By using only

historic data, this method can be incorporated in an online change detection method.

The ratio ~t is compared with two thresholds: the low threshold thlow and the high

threshold thhigh. When the data objects in the working set become more homogeneous

at time t, the radius R of the hypersphere and thereby the ratio ~t will decrease. When

the new value of ~r is lower than the low threshold thlow, a change detection is observed

for time t. The same holds for a more heterogeneous set of data and an increase of ~r
higher than thhigh. This is illustrated in Figure 4.3.

The appropriate values for the thresholds strongly depend on the characteristics of the

data and the parameter C (as discussed in Section 3.3.4). This trade-off parameter

regulates the fraction of data objects that will be rejected from the constructed model.

Since a high value of C assigns a high penalty to outliers, data objects are more likely

to be incorporated into the hypersphere by increasing the radius. For low values of C

the cost of rejecting data objects is, compared to the benefits of a smaller hypersphere,

relatively low. This gives a relation between the parameters C, thlow, thhigh, and the

sensitivity of the radius ratio based thresholding method. A high value of C, or values

close to 1 for thlow and thhigh result in a sensitive change detection procedure. The

reverse results in less sensitive methods. The correct values for the intended sensitivity

need to be empirically determined.

4.5.3 Post-processing

In our method we use the ratio based thresholding, also used by Camci [13]. From

preliminary experiments we observed that a single change in the data can cause many

detected change points, using the ratio based method. This phenomenon can be ex-

plained by the nature of the thresholding method. Since a single (high or low) threshold

is set for ratio of the radii, high values are considered to be a change point before the

highest point of the peak. As illustrated in Figure 4.3, the peak at t1 represents a single

change point. The region from t2 to t3 is strictly increasing. At t2 a change point is
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detected, since ~t exceeds the threshold. But since it is increasing up to t3, all values of

~t in that period will trigger the ratio based method to indicate a change point.

To overcome this problem, we apply a post-processing method on the generated change

points. All the change points that are within a time period δ of each other are merged

together.

In the following two chapters we will take a detailed look at the used data sets and apply

the method as described in this method to those sets.
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Artificial data results

In this chapter we will apply the proposed algorithm as stated in the previous chapter

to artificial data sets. For comparison, we use some of the data sets that are used by

Camci [13] and Takeuchi and Yamanishi [62]. These data sets are generated by Gaussian

noise distributions. In Section 5.1 the precise generation method and characteristics of

the data sets are discussed. For our final change detection mechanism we use the RT-

method, also applied by Camci [13]. This is a simple and fast method and allows us to

mainly focus on the OC-SVM model properties that should reflect changes in the data.

The results of these two methods are discussed in Section 5.3.

5.1 Artificial data generation

In this section we present four data sets, as used by Camci [13] and Takeuchi and

Yamanishi [62], to provide for a quantitative performance comparison. All the data sets

are modeled by a second-order AR-model as in Equation (5.1), where εt is a Gaussian

distribution modeling the noise with mean 0 and variance σ2 = 1, a1 = 0.6 and a2 =

−0.5.

xt = a1xt−1 + a2xt−2 + εt, (5.1)

The length of xt is 10000 and change points are generated at each y × 10000th data

point, with y = (1, 2, 3, . . . , 9).

Using this general AR-model, we create four different data sets, all visualized in Fig-

ure 5.1. Each data set is characterized by a change in mean, variance, or both in the

Gaussian term εt:

44
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1. Fixed increasing mean: at each change point y the mean is increased with

∆(y) = 5. This set is the first data set of Camci [13]. The main characteristic is

that the difference between the means of the Gaussian term εt is fixed and thus

the relative distance becomes smaller. The data is plotted in Figure 5.1a.

2. Reduced increasing mean: at each change point y the mean is increased with

∆(y) = 10 − y. This set is the first data set of Takeuchi and Yamanishi [62]. In

contrast with the previous set, in this set the absolute difference in mean is reduced

over time. The data is plotted in Figure 5.1b.

3. Reduced increasing mean, increasing variance: at each change point y the

mean is increased with ∆(y) = 10 − y and the standard deviation is of εt is

0.1/(0.01 + (10000 − x)/1000). This set is the second set of Camci [13]. This

set combines the reduced increasing mean property of the previous set with an

increasing variance, causing the change points to become more vague over time.

The data is plotted in Figure 5.1c.

4. Alternating variance: at each change point y the variance σ2 is set to 9.0 when

y is odd, and to 1.0 otherwise. This set is the thirds sets from Camci [13] and

Takeuchi and Yamanishi [62]. This data set is used to measure the ability of

detecting changes in decrease of variance, as Camci [13] claims is not trivial. The

data is plotted in Figure 5.1d.

5.2 Quality metrics

For an quantitative measure of quality of the proposed method applied to the four

aforementioned data sets, we employ two metrics, inspired by and slightly altered from

Takeuchi and Yamanishi [62]. The first metric is the average delay davg, for which we

first need to define the notion of delay d for each change:

d(y) = |ty − t∗y|, (5.2)

where ty is the time of the closest discovered change point and t∗y is the true change

time. We can then define the davg over all the discovered change points Y as:

davg(Y ) =

∑Y
y=1 d(y)

Y
. (5.3)

Besides the delay, and the standard deviation std(davg) to measure the spread, which

should be low to indicate discovered change points near the actual change point, we
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(a) Data set 1, Fixed increasing mean.
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(b) Data set 2, Reduced increasing mean.
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(c) Data set 3, Reduced increasing mean, increasing variance.
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(d) Data set 4, Alternating variance.

Figure 5.1: Plots of the artificial data sets used.

need to penalize discovered change points which do not relate to a true change point.

For this we use the False Alarm Rate γ, expressed as

γ(Y ) =
Yfalse
Y

. (5.4)

For a high quality method the average delay davg and False Alarm Rate (FAR) γ should

both be low. In our results we will also list the parameters used, since these need to be

user-defined and are part of the (manual) optimization process. The parameters are:

• Window length: The window length that is processed by the SVDD algorithm.

This is the number of data points that are continuously modeled in the shape in

a hypersphere.

• Sigma of RBF: The value of σ for the RBF kernel. The effect of this parameter

has been discussed in Section 3.3.5.

• High threshold: The thhigh threshold value for the RT method described in

Section 4.5.2. A higher value indicates a more precise and robust setting.
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Table 5.1: Parameter settings and results of the artificial data sets. The table shows
the FAR γ, average delay davg and its spread, using the standard deviation. Low values

for the results are better.

Set 1 Set 2 Set 3 Set 4

Window length 50 100 50 50

Sigma of RBF 13 13 15 13

High threshold 1.6 1.6 1.5 2.2

Low threshold 0.1 0.1 0.5 0.1

δ 10 10 10 50

γ(Y ) 0 0.1 0.1 0.1

davg 2.27 6.18 0.64 15.36

std(davg) 1.19 7.94 0.92 17.70

• Low threshold: The thlow threshold value for the RT method described in Sec-

tion 4.5.2. A lower value indicates a more precise and robust setting.

• Proximity: In the post-processing phase the detected change points which are

within a certain range δ will be merged. This parameter indicates the minimal

number of data points that change points must differ in order to be considered

separate detections.

For all the sets we have used a value of C = 0.1, which indicates that 10% of the data

points were considered to be outliers. This is a normal setting for the SVDD method.

5.3 Results

The results of all the data sets are provided in Table 5.1, together with the used pa-

rameters. For each data set it shows the high and low thresholds used in the RT based

change detection method. During the post-processing all detected change points within

a certain proximity δ are merged, for which the value differs per data set. The difference

between the actual and final detected change points are expressed as an offset. The data

sets were processed with different window lengths and σ value for the RBF kernel.

To give a better impression of the spread of the accuracy of the detected change points,

a box plot for each data set is displayed in Figure 5.2 and are the results are visualized

in Figure 5.3. This last figure shows the number of data points between each actual and

closest detected change point. Using the box plot notation, we can visualize not only

the average but also the spread of the delay. With each data set embodying different

characteristics, different observations can be drawn from the data sets. In the references

figures, the solid blue line represent the radius of the constructed hypersphere. The
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Figure 5.2: Box plot of the results for the artificial data sets, indicating the number
of data points between the actual and closest detected change points. A lower and more

compact box plot is better.

vertical dashed and thick red lines are the discovered change points. For each data set

the following is observed:

1. Fixed increasing mean: In Figure 5.3a we see that each change point is almost

equally fast and accurate detected. This implies that the relative difference be-

tween the means of the Gaussian distribution has little effect on the detectability

of the algorithm.

2. Reduced increasing mean: Figure 5.3b shows that the absolute difference be-

tween the means of the Gaussian distribution is a certain influence to the de-

tectability. Although all change points are correctly detected (at the beginning of

the series are two outliers), the change in radius becomes less significant at every

change point.

3. Reduced increasing mean, increasing variance: In Figure 5.3d we see the

same effect, in regard to the mean, as with the previous data set. Furthermore,

the increasing variance makes change detection harder. This is visible around the

9000th data point and after, where the radius keeps increasing.

4. Alternating variance: The ability to detect decreases in variance of the Gaussian

distribution is displayed in Figure 5.3c. Although some change points are discov-

ered with a delay almost up to the length of the window processing the data, the

decreases are all detected. The box plot of this set, number 4 in Figure 5.2, shows

a wider spread for the results.



Chapter 5. Artificial data results 49

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 

 

Hypersphere radius set 1

(a) Fixed increasing mean data set.
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(b) Reduced increasing mean data set.
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(c) Reduced increasing mean, increasing variance data set.
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(d) Alternating variance data set.

Figure 5.3: Hypersphere radius sizes for the four artificial data sets. The detected
change points are displayed as dashed thick red vertical bars.
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Real-world results

In this chapter we discuss the real-world data sets used for this research and the perfor-

mance of our proposed algorithm on these data sets. In Section 6.1 we discuss available

data sets and argue that these are inappropriate for our research. It is followed by an

overview of the setup we have created to record our continuous data sets in a real-world

environment, both for in- and outdoor activities. The series of activities performed are

discussed in Section 6.2. In that section we show typical plots of the inertial sensor

data and stills from the video recordings. That will illustrate the setting in which the

activities are performed and the characteristics of continuous data. The results of the al-

gorithm are discussed in Section 6.3. Finally, we provide a list of possible improvements

in Section 6.4.

The results are measured with both quantitative measures, as introduced in Section 5.2,

and qualitative claims on the performance of the algorithm applied to the real-world

data. Since the data sets used are real-world recordings, we will put emphasis on the

latter type of quality measures i.e. the qualitative claims.

6.1 Data Sets

In the previous chapter we have applied our method OCS-HATS to the artificial data

sets from Camci [13] and Takeuchi and Yamanishi [62]. In this chapter we apply the

method to real-world data sets. The data sets come from inertial sensor data recorded

during human activities, such as walking, running, ascending and descending stairs,

and standing still. To compare our results with other research, we have tried to apply

OCS-HATS to two commonly used data sets. The first is the data from the WISDM

lab [43]. As an excerpt from the data in Figure 6.1 shows, the activities are recorded

50
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Figure 6.1: Excerpt from the WISDM data set [43]. The first five activities of subject
33 are displayed. Due to the discontinuous nature of the recordings, this data set can

not be used for change detection.
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Figure 6.2: Excerpt from the UCI HAR data set [5]. The recorded training activities
of subject 25 are displayed. Due to the imprecise (and possibly incorrect) labeling and
the short duration of activities, the data set can not be used for the change detection

method as described in this thesis.

non-continuous. Whilst this data set is convenient for activity classification, it does not

allow for detection of change points. Even if the gap between the activities would be

removed, the transition segments between activities would still be missing and thus the

data set would not reflect continuous recordings. The other commonly used data set is

the UCI HAR from the Machine Learning Repository and originates from [5]. As shown

in an except in Figure 6.2, the labeling to the data segments seems to be incorrect.

Furthermore, it is not clear how the data is recorded and whether all activities are

performed continuously.

Because of the above described shortcomings of commonly used data sets, we have

decided to record activities by ourselves. The following requirements were set for our

data sets:

1. The activities need to be performed and recorded in a continuous manner,

2. The environment should be natural and both in- and outdoor,

3. The data should be clearly annotated, as objective as possible,

4. The required hardware (and software) should be widely available.

With these requirements in mind, we have created the following setup. All activities

were recorded by a smartphone worn on body in the right front pants pocket of the
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subject. The used phones are the HTC Sensation XE and HTC Desire, running

the Android smartphone operating system. During the activities the inertial sensor

data is recorded using a free application, Sensor Logger. This application records

the sensor data to CSV files, which are then transformed to MATLAB compatible files.

The constructed algorithm processes the data in an online manner (using only current

and historic data). The MATLAB implementation uses the SVDD library dd tools

by Tax [68]. During the activities, the subject is recorded with a video camera to enable

manual labeling and determination of the change points. As illustrated in the top row

of Figure 6.5, the manual labeling is an ambiguous task. In Figure 6.5b a transition

between walking and running is shown. It is impossible to determine the exact location

of the change point and thus quantitative quality measures (such as the delay) are of

less importance.

Using the video recordings, the data sets are manually annotated, as shown in the plots

of Figures 6.3, 6.4 and 6.7. The graphs display each from a single recording the inertial

sensor values (see Table 4.1 for an explanation of the metrics), with manually annotated

activities above the data. The manually and discovered change points are compared to

draw quality conclusions over the algorithm’s performance. All of the used data sets,

including the video material and manual labeling, are made available to the public as

the Almende Continuous Real-world Activities with on-body smartphones Sensors Data

Set (ACRAS) [72] for further research. The following section discusses the performed

activities during the recordings.

6.2 Data Gathering

For our data sets of real-world activities we have sampled both in- and outdoor activities.

The subjects performing the activities are three males, of an age around 25. We have

used four types of recordings. The first type (Run 1 and Run 2) consists of various

outdoor recordings with segments of walking, running and standing. For the second

type (Run 3, 4, and 5) some of the same activities are performed in a straight line,

whilst others are performed around corners or in a wide circular direction. The third

type (Run 6) consists mainly of walking up and down circular shaped stairs, with small

horizontal parts between the segments. The last type is for Run 7, in which we walked

in a straight line, took a 90◦ counter-clockwise turn (around the corner) and continued

walking. A more detailed description of the performed activities follows.
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6.2.1 Outdoor straight lines

The first series of outdoor performed activities consist of standing still, walking, and

running segments in a straight line. Halfway the recording is a 180◦ turn. The plots

of Figure 6.3 shows the recordings of Subject 1. The recorded metrics originate from

the accelerometer, rotational and magnetometer sensors. The solid black lines indicate

manually annotated change points. A still from the video recording, showing Subject 2

performing a (sprinting) run segment, is in Figure 6.5f.

6.2.2 Outdoor free

The second series of outdoor recordings consist of more free form activities. The per-

formed activities consist, as with the first set, of standing, walking, and running. Fur-

thermore, some segments are performed in a circular manner. For example, the running

activities are performed around a fountain with an estimated diameter of 10 meters. The

plots of the recordings of Subject 2, for the accelerometer, rotation, and magnetometer

are shown in Figure 6.4. For Subject 2 the still of the video recordings are in the upper

row of Figure 6.5, for Subject 1 in the lower row.

6.2.3 Indoor stairs

The final series of activities recorded, consists of walking up and down the stairs, indoor.

The stairs are shaped in an semi-circular form, with a small horizontal segment on each

floor. The still of Figure 6.6a illustrates the circular shape of the stairs. In Figure 6.6c

the small flat segment is visible. Between the stairs the subject walked in a hallway with

a 180◦ counter-clockwise turn, as shown in Figure 6.6b. The recorded sensor data of the

performed activities are visible in the plots of Figures 6.7a to 6.7c.

6.3 Results

In this section we will provide the results of our methods OCS-HATS applied to the

real-world data sets and discuss the quality of the solution. As stated above, we will use

the quantitative quality metrics as used in Section 5.2. That will be in the form of a

tabular overview of the (manually set) best meta-parameters and results, expressed in

FAR γ and average delay davg (following Section 5.3). Furthermore, we have analyzed

the results from an empirical point of view, since the problem of finding change points in

human activities is ambiguous. For the sake of brevity we excluded those observations

from this chapter; they can be found in Appendix A.
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Figure 6.3: Annotated plots of a full recording performed by Subject 1. The vertical
lines are manually determined change points. The label above each segment indicates

the current performed activity.

6.3.1 Quantitative metrics

The employed two-stage algorithm requires the setting of user defined parameters. In

Table 6.1 for each run the results are listed. The right-most column summarizes the

overall performance by taking the average over all the runs. We have used a window

length of 50 frames, which represents around 1.16 seconds of data (the frame-rate of

the recordings is not fixed). The other parameter values, i.e. the RBF σ, high and low

threshold, and proximity parameter δ, are the result of an educated guess and manual

optimization. In general, a high value for the upper threshold and low value for the

lower threshold indicates a robust method, since it indicates that change points are

significantly different from homogeneous segments. The chosen proximity δ should be

low, since that indicates there will be few false positives.

To give a better impression on the quality of the davg, Figure 6.8 shows a box plot for

each run. It shows the spread of the davg in seconds over all the change points. A lower

and more compact box plot is better.
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Figure 6.4: Annotated plots of a full recording performed by Subject 2. The vertical
lines are manually determined change points. The label above each segment indicates

the current performed activity.

Table 6.1: Results of the real-world data sets. The used parameters are: window
length = 50, σ = 13, thhigh = 1.2, thlow = 0.8, δ = 0.7. The table shows the FAR γ,
average delay davg and its spread, using the standard deviation. Low values are better.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Average

γ(Y ) 0.1 0.2 0.14 0.37 0.29 0.64 0.57 0.33

davg 0.52 0.85 0.93 0.54 0.69 0.51 0.32 0.62

std(davg) 0.71 0.31 0.68 0.37 0.50 0.44 0.35 0.48
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Figure 6.8: Box plot of the results for the real-world runs, indicating the number of
data points between the actual and closest detected change points. A lower and more

compact box plot is better.
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(a) Walking (b) Change point (c) Running

(d) Running CW (e) Walking (f) Sprintng

Figure 6.5: Stills of video recordings during performing of the outdoor activities of
walking and running. Figure 6.5b shows the change point between the two activities.

Figure 6.5d shows the running in clockwise motion.

(a) Downstairs (b) Walking (c) Upstairs

Figure 6.6: Stills of video recordings during performing of the indoor activities of
walking, ascending and descending the stairs.
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Figure 6.7: Annotated plots of a full recording performed by Subject 3 while walking
the stairs, indoor. The vertical lines are manually determined change points. The label

above each segment indicates the current performed activity.

6.3.2 Qualitative observations and remarks

It can be ambiguous where to place the (manually annotated) change points, in the case

of real-world data. The quantitative quality measure can give a distorted view on the

performance. To overcome this, we will state observations and remarks found after close

(visual) inspection of the annotated and discovered change points. In Figure A.2 all the

results are plotted. The black solid lines indicate our manually determined change points.

The dashed purple lines indicate the change points as discovered by our method. We will

start with general observations applicable to all the runs. A more detailed discussion

for each run can be found in Appendix A. Where possible, a graphical illustration will

support our observations.

Overall our impression is that the proposed method is fairly good at recognizing change

points. Depending on the parameters for the sensitivity adjustment, almost all changes

are discovered.
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Our first observation is that with a high sensitivity it seems that the method produces

many false positives. Although the performed activity did not change around those false

positives, there was a change in the recorded data. This is a drawback of the method:

since the sensitivity is set globally, it can produce false positive change points for some

segments of a run.

The second observation is that the method often recognizes a change point before our

annotation. Again, after closer inspection we can see that the data changes shape and

distribution before we annotated a change based on the video recordings. This effect

can be observed in the case of a transition from running to walking; the last ‘steps’ of

running are already labeled as change points. As with the above behavior, this is subject

to parameter settings.

Considering the overall performance and results, we have the following observations:

• Merging: in our method we use a proximity time period δ (usually up to 0.5 -

1.0 seconds) to merge discovered change points that are close together. Multiple

merging-strategies can be applied, and in our method we use the naive implemen-

tation by simply ignoring all the discovered change points that occur less than δ

seconds after the previous change point. This works well when there is a block of

noisy data with a high amount of (falsely) discovered change points. On the flip

side, this method will ignore real new change points which occur during the noisy

period. This problem on itself can be formulated as a change detection problem.

• Masking: Since the parameters for the detection method are set globally, it is

difficult to discover all the change points (and only the change points) without a

high false alarm rate. If a change point is proceeded by a noisy block, then the

real change point will be merged with the previous change points. In an other

case, where a change point is very clear represented in the data but the next near

change point is more subtle, the latter change point is masked by the former. This

masking effect is also discussed in [38], where an iterated approach is applied.

• Variance and threshold levels: For our video synchronization, we started and

ended each recording with a few seconds in which the recording smartphone was

kept still in the air. Then we shake the smartphone to get a sudden change in the

inertial sensor data, so the video and sensor data stream can easily be aligned.

During the still period, the data variance, and thus the constructed hypersphere,

becomes very small. As a results, even small movements are considered to be

changes and in the case of a mid-air kept smartphone a lot of false change points

are detected. Due to the merging effect described above, the final real change

point (shaking the smartphone) is not discovered.
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• Incorrect weighting: In our analyses we have used the data from the accelerom-

eter, magnetic field, and rotation sensors. In the segments which embodied move-

ment in a circular manner (such as walking and running around a fountain), the

corner was not (or at a different time point) discovered. However, when we only

used the magnetic field and rotation sensors, the corner was correctly discovered.

Other transitions, such as from walking to running, are harder to discover without

the (linear) accelerometer sensor data.

A more elaborate discussion with observations and remarks is provided in Appendix A.

6.4 Possible improvements

From the above section we can extract a few possible improvements for the algorithm.

Most of the observations and remarks are due to a different required sensitivity for local

segments of the run. Currently, our method employs a global setting for the thresholds.

A possible improvement would be to use locally optimized parameters, although that

would require an reflective data processing approach or more a priori information about

the data. The design decision for our approach was to create a general method, which

requires no a priori knowledge about the data distribution.

Furthermore, we discovered that sometimes, especially with movements incorporating

circular motions, the addition of (linear) accelerometer data makes the discovery of

change points harder. This problem can be handled by, for example, assigning weights

to the sensor data streams. Change can then be detected when it only occurs in one of

the streams.



Chapter 7

Conclusion

This research has applied OCC methods to inertial sensor data, recorded during the

performance of various human activities, in order to create a temporal segmentation of

those recordings. The goal was to find the change points between activities, assuming

that it will aid our understanding of the sensor values. To do so, we used the SVDD

algorithm by Tax [64] and applied it to a sliding window of data, as done by Camci [13].

From these methods we have created our own method OCS-HATS and made it publicly

available [73], which is a slightly modified implementation of SVCPD by Camci [13]

applied to HAR data. An increase of the radius of the constructed hypersphere, which

encloses the data objects and increases with heterogeneous segments of data, is extracted

and used for indication of change.

In Section 7.1 we will further discuss the proposed method for temporal segmentation

of inertial sensor signals from human activities. Our main findings and contributions

are discussed in Section 7.2. The limitations of our method and research is subject of

Section 7.3. Section 7.4 provides suggestions for future research. Section 7.5 is the final

section of this thesis.

7.1 Proposed method

The goal of this research was to find a temporal segmentation of recordings obtained

from human activities. This was performed in the wider context of activity classifica-

tion. Currently, many algorithms obtain an implicit segmentation as a side-effect of

direct activity classification. In this research the primary goal was finding a temporal

segmentation, which is assumed to be able to aid the classification step. This problem is

reduced to finding change points in temporal data sets originating from inertial sensors.

60
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We have considered a range of segmentation methods, from which the method by

Camci [13] showed potential. It is based on the detection of outliers in a time se-

ries data, assuming that an increase of outliers indicates a change in the underlying

generating model. For the detection of outliers it uses the SVDD method by Tax [64].

It tests every new data point with the constructed model; whether the data point is in

or outside the model, and whether the model increases or decreases in radius size. The

constructed sliding-window algorithm, SVCPD, is applied to artificial Gaussian noise

data.

In this research we have applied the method by Camci [13] to data from inertial sensors,

recorded by smartphones. We have used the accelerometer data for measurement of

speed, the gyroscope data for measurement of rotation, and the magnetometer to mea-

sure the direction and orientation of the performed activities. The proposed method, as

discussed in Chapter 4, reduces a high dimensional signal to a single property, obtained

from the constructed model, which can be interpreted to indicate change.

The constructed model follows the implementation of Tax and Laskov [67] for an incre-

mental version of SVDD, I-SVDD. This algorithm creates a OC-SVM model by process-

ing the data over a sliding window. The model represents a hypersphere from which the

radius size is extracted. That property is of interest since the assumption is that a het-

erogeneous window of data will show an increase of radius, in relation to a homogeneous

segment of data. The homogeneous segment of data will have a relatively small radius

since the data points will be close together, resulting from the continuity assumptions.

To test our approach, we have used the same data as used in the experiments from

Camci [13] and Takeuchi and Yamanishi [62], for which the results are comparable with

the original research (see Section 5.3). Furthermore, since this research is focused around

human activities, we have recorded and manually annotated in- and outdoor activities.

The discovered change points were compared to the annotated change points, obtained

from video recordings. The results where discussed in Section 6.3. In this research

we found that other public available and wide used common data sets, such as the

WISDM [43] and UCI HAR [5], were not useful for our purpose, since the activities are

non-continuously recorded.

7.2 Contributions

While temporal segmentation of time series data is not uncommon, the application to

inertial signals is currently not under much research attention. For other contexts it

has been applied, such as motion tracking [8, 44]. In the context of human activities
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the segmentation obtained from inertial sensor signals is often an implicit result of

classification.

We have shown that it is possible to explicitly obtain a temporal segmentation, expressed

as change points, of activities performed by humans. This was performed in a real-world

setting, showing the robustness of the method for noisy data. Since manual labeling (the

annotation of change points on the time series data) of human activities is ambiguous

we put emphasis on the qualitative inspection of the results. The proposed method gives

fairly good results, although parameter tuning is a subject of further research.

We have constructed OCS-HATS as a slightly simplification of SVCPD by Camci [13]

application to real-world inertial sensor data. The Matlab implementation is free to

use for the public [73]. We have tested our proposed method with the same artificial

data and did not find a deterioration in the results. Because of the noisy nature of

the recorded activities and the ability to segment the time series, we have shown that

OCS-HATS is a robust method for real-world applications.

The proposed method is, as far as we know, the first application of OC-SVM based

methods to on-body worn inertial sensor signals, such as accelerometer data. Further-

more, it applies the algorithms, amongst others of Tax and Duin [64], to real-world data.

We have shown that the assumption of a change the performed activity results, due to a

change in the data distribution, in an increase of the hypersphere’s radius. This increase,

and a similar decrease in the case of homogeneous activity distribution in the current

window, can be used for an indication of change.

The proposed OCS-HATS method processes the raw inertial sensor data, originating

from sensors as accelerometers and magnetic field sensors. This contrasts with many

other approaches that extract features in a pre-processing stage.

Furthermore, because the it is an online method, it is suitable for applications that need

direct segmentation of time series data.

The commonly used data sets [5, 43] are recorded in a non-continuous manner. The

proposed method requires data streams of continuous activities. Annotating change

points on this kind of time series can be ambigious, so we needed to have a ground

truth. Because of these two shortcomings, we have recorded continuous real-world data

sets, together with a third persion point of view video stream. All the recorded data is

made publicly available as the ACRAS data set [72]. Using our results as a benchmark,

it is possible for others to use our data set and improve on it.
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7.3 Limitations

Our proposed method OCS-HATS was constructed under the assumption that an explicit

temporal segmentation of inertial sensor data can aid the process of activity classifica-

tion. We have expressed the problem of temporal segmentation as finding change points

in the time series data. Since this is the first application of OC-SVM based algorithms to

real-world accelerometer data, we have limited ourselves to creating an initial method,

without optimization. The (results of the) proposed method is subject to parameters,

which we have set manually based on empirical results and experience.

We have applied our method to real-world data, recorded in 7 runs. For a better and

more robust analysis of the algorithm it can be applied to other real-world data sets.

Although we have recorded and publicized our data, it would be nice if others also record

continuous data sets with ground truth labeling, for fair comparison. However, due to

the application domain and ambiguity, the results remain subjective.

We have impplemented OCS-HATS in Matlab. Because of that, we can not make

reliable claims on the speed and memory usage of the algorithm on real-world devices

such as smartphones. With the online nature and applications in mind and different

targeted hardware platforms, this is something that could be of importance.

7.4 Future research

The motivation for this research was, amongst others, the assumption that an explicit

temporal segmentation of inertial signals can be used to obtain a better classification of

the performed activities. There are two reasons for that. First, since the segmentation

adds information about sequential data points (whether they belong to the same class),

the a priori knowledge about the distribution changes. Second, the window of data used

for model construction can be much larger (than the often used length of 1-3 seconds).

This enables a better mathematical model to be constructed. In future research the

performance of classification methods that use temporal segmentation can be compared

with those that do not. This would confirm or reject the assumption that temporal

segmentation enables better classification.

As discussed in the previous section, the parameters for our proposed method (such

as the SVDD settings and RBF width σ), are set manually and globally. For further

research we advise to create an automated optimization method for the parameters.

Furthermore, to overcome the masking effect discussed in Section 6.3, a method which

determines the parameters locally should obtain better results.
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Since temporal segmentation of inertial signal is not yet a very active field of study,

more studies can be performed on this subject. In our approach we have used (all) the

raw data directly, to create a method independent of the domain. In the field of activity

recognition many methods make use of pre-processing steps, from which one step often

is feature extraction from the raw data. That, and other pre-processing steps, could be

incorporated in explicit temporal segmentation of inertial signals. Future research could

focus on using those extracted features to aid the detection of change points.

Similar, feature selection if often used to use only the best dimensions of a signal. We

have encountered situations in which the exclusion of some sensors, e.g. the accelerom-

eter, yields better results. This occurs mainly in situations where a rotation is part of

the change (e.g. walking around a corner). Thus depending on the desired granularity of

the segmentation, it can be beneficial to discard some of the time series data. Applying

feature selection to the sensors to restrict the data used for model construction could be

a subject of further research.

Finally, the application of OC-SVM based methods to new types of data is an interest-

ing subject for further research in itself. It creates a powerful non-linear classification

solution and combined with optimization techniques can reduce problems of relatively

high dimensionality to a single (or a few) dimensions.

7.5 Final words

In this research we have constructed a method to segment inertial sensor time series data,

from performed human activities. To this end we have applied OCC and OC-SVM based

method to our own recorded data sets. We followed the approach by Camci [13] and used

the theory and implementation of SVDD by Tax [63, 68]. Although the performance

of the method heavily depends on user set parameters, the results are promising. We

believe that the temporal segmentation of time series data can aid the process of activity

classification, which is a logical follow-up on this research.

We have created a continuous recorded data set ACRAS [72] from inertial sensors found

in typical modern smartphones. The transition periods between the activities are part

of the time series data. This makes the data set useful for research on segmentation.

Besides the manually annotated change points can the ground truth of the performed

activity be determined by using the provided video recordings of the activities.

With our method for temporal segmentation of human activities, OCS-HATS [73], we

believe to have contributed to the field of machine learning in the context of Human

Activity Recognition.
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Observations for Real-World

Results

This appendix provides observations and remarks which we made from inspecting the

real-world results from Chapter 6. In Section 6.3.2 we have discussed a few overall

effects. In the following we discuss the performance of each run, using the (manually

determined) specific parameters as listed in Table A.1.

Table A.1: Parameter settings and results of the real-world data sets. The table
shows the FAR γ, average delay davg and its spread, using the standard deviation. Low

values for the results are better.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Window length 50 50 50 50 50 50 50

Sigma of RBF 13 13 13 13 13 4 13

High threshold 1.2 1.5 1.1 1.3 1.2 1.7 1.3

Low threshold 0.8 0.8 0.7 0.7 0.8 0.6 0.6

δ (s) 0.7 0.85 0.6 0.7 1 0.8 1

γ(Y ) 0.1 0.05 0 0.2 0 0.48 0

davg 0.52 0.83 0.92 1.26 1.05 0.92 0.47

std(davg) 0.29 0.55 0.75 1.67 0.78 0.92 0.52

0

1

2

3

4

5

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Figure A.1: Box plot of the results for the real-world runs, indicating the number of
data points between the actual and closest detected change points. A lower and more

compact box plot is better.
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To give a better impression on the quality of the davg, Figure A.1 shows a box plot for

each run. It shows the spread of the davg in seconds over all the change points. A lower

and more compact box plot is better.

When looking at the individual runs, we have the following observations for each run:

1. Subject 2, straight walk and run Figure A.2a

• The first transition from running to walking, around 14s is harder to discover

than the transition for the same activities around 33s. This shows is that in

real-world applications there is a diversity between the same transitions and

activities.

• Around 8s, 9s, and 16s a few steps (while walking) are regarded as change

points. During the running segments from 17s and 28s there is a lower prob-

ability of change for each step.

2. Subject 1, straight walk and run Figure A.2b

• Following the video recordings, we have annotated a change point from run-

ning to walking around 37s. Our method discovers a change point almost

a second before. In retrospect, we can see that the data distribution indeed

changes from the discovered change point on. This shows us two important

principles. The first is that the annotations are subjective. The second is

that between different activities the transition period is longer than we would

think. Looking at the data, we can see that the body slows down, even before

we visually notice it on the video recordings.

3. Subject 2, walk and run around fountain Figure A.2c

• Like in the first run, the walking segment from 24s results in a change point

for each step. Further inspection of the data reveals that each step is indeed

different from the other. Due to the global parameter settings, the sensitivity

is too high for this segment to recognize it as one. It could also be that

our used window-length is too small, to model a good representation of this

segment.

• During the circular run, from 12s till 24, there are two change points discov-

ered. The difference for the rotational vectors need to accumulate to a certain

value before they have enough influence to let the rotation be regarded as a

change point.

4. Subject 1, walk and run around fountain Figure A.2d
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• As with the other runs, the accelerometer data makes it harder to detect

turns. It requires a higher sensitivity, which results in a higher false alarm

rate.

5. Subject 2, walk and run fountain 2 Figure A.2e

• During the standing segment around 38s there are a lot of false positives. It

seems to be the false heterogeneity problem described above.

6. Subject 3, indoor stairs Figure A.2f

• The walking segment around 22s, between two segments of walking down-

stairs, shows little difference in the data. To recognize it as a change point a

high sensitivity and low proximity time period δ is required.

• During some segments (downstairs from 24s, upstairs from 42s and 54s)

the method discovers more change points than our annotation. A closer

inspecting of the raw data reveals indeed changes in behavior. To exclude

these (semi) false positives, a better tuning of parameters is required.

• Because of the circular shape of the stairs, the magnetic field sensors con-

stantly differs. Although our method is build to exclude slow shifting changes

(because we are only interested in sudden changes), with our used window

width it still eventually results in change points.

• The difference between taking the stairs and walking is smaller than, e.g. ,

walking and running. The delay between these segments seems to be larger,

as illustrated around 33s.

7. Subject 2, walk around corner Figure A.2g

• The 90◦ counter-clockwise turn during the walking activity is hard to discover

when the accelerometer sensor data is included. When only the magnetic field

and rotation sensors are used, the turn requires a lower sensitivity. With only

these two sensors all the other change points in this run are also successfully

discovered.
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Figure A.2: Annotated plots of all runs. The black vertical lines are manually de-
termined change points, the purple dashes lines are the discovered change points. The

label above each segment indicates the current performed activity.
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